搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段新型低阻抗高功率微波源的模拟研究

闫孝鲁 张晓萍 李阳梅

引用本文:
Citation:

X波段新型低阻抗高功率微波源的模拟研究

闫孝鲁, 张晓萍, 李阳梅

Particle-in-cell simulation of a new X-band low-impedance high power microwave source

Yan Xiao-Lu, Zhang Xiao-Ping, Li Yang-Mei
PDF
导出引用
  • 提出了一种新型低阻抗高功率微波源, 能在单个器件内产生两束锁相的相干高功率微波, 对两束相干微波进行功率合成有望在单个高功率微波器件中实现更高的功率输出. 粒子模拟结果显示, 在电压687 kV、磁场0.8 T时, 该微波源整体阻抗36 , 两束微波的频率都为9.72 GHz, 输出功率分别为1.20 GW和2.58 GW, 功率效率分别为28%和30%; 两束输出微波之间频率抖动小于 3 MHz, 相位差抖动小于 3.
    High power microwave (HPM) source is attractive in generating gigawatt (GW) class microwaves based on the beam-wave interaction. Generally, HPM source with a high beam-wave conversion efficiency has a higher impedance. To improve the single-tube output power of HPM source, reducing the impedance of the device and increasing its power capacity are necessary. In this paper, a new low-impedance HPM source is proposed and proved to be capable of generating two phase-locked high power microwaves, which makes it promising to realize a higher combined power in a single HPM device.The new low-impedance HPM device consists of a two-cavity TKA (denoting the outer sub-source in the following) and a multiwave Cerenkov generator (referring to the inner sub-source below) inserted in the TKA inner conductor. These two sub-sources are connected in parallel and share a common magnetic field. A dual-concentric annular cathode is used in this microwave source, which is capable of emitting two concentric annular electron beams and driving the internal and external sub-source simultaneously. The advantages of this device are reducing the impedance and improving the injection electric power. When a voltage pulse is applied to the diode, part of microwaves generated in the inner subsource will leak into the outer sub-source (i.e., TKA) through the A-K gap. By amplifying the leakage microwaves, the TKA will be easily locked by the inner sub-source. Considering the fact that the microwave source consists of two sub-sources, the power capacity will also be greatly improved.As a result, particle-in-cell simulation indicates that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, two microwave beams that have a nearly identical frequency of 9.72 GHz and output powers of 1.20 GW and 2.58 GW respectively, are generated. The corresponding power conversion efficiencies are 28% and 30%, respectively. The frequency difference between these two microwaves fluctuates within 3 MHz and their phase difference is not in excess of 3. When the diode voltage changes from 665 kV to 709 kV, frequency difference between the two sub-sources fluctuates within 3 MHz and their phase difference fluctuation is within 5 in one voltage burst; the phase difference changes 10 in this voltage range. The impedance of this HPM source is as low as 36 .To sum up, the new HPM source proposed in this paper has a lower impedance and higher power capacity. The phase difference between the inner sub-source and the outer sub-source is very stable and favorable for the coherent power combination, which indicates that the new HPM source promises to realize a higher output power in a single-tube device.
      通信作者: 张晓萍, zhangxiaoping@nudt.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号: 2015AA8037074A)资助的课题.
      Corresponding author: Zhang Xiao-Ping, zhangxiaoping@nudt.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA8037074A).
    [1]

    He J T, Zhong H H, Liu Y G 2004 Chin. Phys. Lett. 21 1111

    [2]

    Zhang X P 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology)

    [3]

    Arman M J 1994 Proc of the 7th National Conference on HPM Technology, Monterey CA 1999 p251

    [4]

    Arman M J 1995 Proc of SPIE, San Diego CA, July 9 1995 p21

    [5]

    Arman M J 1996 IEEE Trans. Plasma Sci. 24 964

    [6]

    Yang W Y, Ding W 2005 Phys. Plasmas 12 063105

    [7]

    Yang W Y, Ding W 2002 Phys. Plasma 9 622

    [8]

    Cao Y B, Zhang J D, He J T 2009 Phys. Plasmas 16 083102

    [9]

    Cao Y B, He J T, Zhang J D, Zhang Q, Ling J P 2012 Phys. Plasmas 19 072106

    [10]

    Ives L, Miram G, Read M, Mizuhara M, Borchard P, Falce L, Gunther K 2003 Proceedings of the Particle Accelerator Conference, Saratoga CA, May 12-16 2003 p1116

    [11]

    Varia, K R 1978 IEEE, MTTS, Int. Microwave Symp. Dig. 1978 p344

    [12]

    Li Y M, Zhang X P, Qi Z M, Dang F C, Qian B L 2014 Phys. Plasmas 21 053302

    [13]

    Li Y M, Zhang X P, Zhang J D, Dang F C, Yan X L 2014 Phys. Plasmas 21 103302

    [14]

    Bai X C 2007 Ph. D. Dissertation (Changsha: National University of Defense Technology)

    [15]

    Qi Z M 2015 (Changsha: National University of Defense Technology)

    [16]

    Qi Z M, Zhang J, Zhong H H, Zhang Q, Zhu D N 2014 Phys. Plasmas 21 073103

    [17]

    Qi Z M, Zhang J, Zhong H H, Zhu D N, Qiu Y F 2014 Phys. Plasmas 21 013107

  • [1]

    He J T, Zhong H H, Liu Y G 2004 Chin. Phys. Lett. 21 1111

    [2]

    Zhang X P 2004 Ph. D. Dissertation (Changsha: National University of Defense Technology)

    [3]

    Arman M J 1994 Proc of the 7th National Conference on HPM Technology, Monterey CA 1999 p251

    [4]

    Arman M J 1995 Proc of SPIE, San Diego CA, July 9 1995 p21

    [5]

    Arman M J 1996 IEEE Trans. Plasma Sci. 24 964

    [6]

    Yang W Y, Ding W 2005 Phys. Plasmas 12 063105

    [7]

    Yang W Y, Ding W 2002 Phys. Plasma 9 622

    [8]

    Cao Y B, Zhang J D, He J T 2009 Phys. Plasmas 16 083102

    [9]

    Cao Y B, He J T, Zhang J D, Zhang Q, Ling J P 2012 Phys. Plasmas 19 072106

    [10]

    Ives L, Miram G, Read M, Mizuhara M, Borchard P, Falce L, Gunther K 2003 Proceedings of the Particle Accelerator Conference, Saratoga CA, May 12-16 2003 p1116

    [11]

    Varia, K R 1978 IEEE, MTTS, Int. Microwave Symp. Dig. 1978 p344

    [12]

    Li Y M, Zhang X P, Qi Z M, Dang F C, Qian B L 2014 Phys. Plasmas 21 053302

    [13]

    Li Y M, Zhang X P, Zhang J D, Dang F C, Yan X L 2014 Phys. Plasmas 21 103302

    [14]

    Bai X C 2007 Ph. D. Dissertation (Changsha: National University of Defense Technology)

    [15]

    Qi Z M 2015 (Changsha: National University of Defense Technology)

    [16]

    Qi Z M, Zhang J, Zhong H H, Zhang Q, Zhu D N 2014 Phys. Plasmas 21 073103

    [17]

    Qi Z M, Zhang J, Zhong H H, Zhu D N, Qiu Y F 2014 Phys. Plasmas 21 013107

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟.  , 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 任泽平, 陈再高, 陈剑楠, 乔海亮. 频率色散表面阻抗对真空电子太赫兹源的影响.  , 2020, 69(4): 040701. doi: 10.7498/aps.69.20191488
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究.  , 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析.  , 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [5] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟.  , 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [6] 吴洋, 许州, 谢鸿全, 李正红, 马乔生. 高增益相对论速调管放大器相位特性的模拟与实验研究.  , 2015, 64(8): 084102. doi: 10.7498/aps.64.084102
    [7] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真.  , 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [8] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟.  , 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [9] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法.  , 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [10] 占昌和, 李天明, 蒙林, 李正红, 吴洋, 邵剑波. 基于离轴高增益速调管的X波段高功率合成技术研究.  , 2014, 63(23): 238405. doi: 10.7498/aps.63.238405
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究.  , 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计.  , 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [13] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟.  , 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [14] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计.  , 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [15] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究.  , 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [16] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究.  , 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [17] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟.  , 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [18] 廖臣, 刘大刚, 刘盛纲. 三维电磁粒子模拟并行计算的研究.  , 2009, 58(10): 6709-6718. doi: 10.7498/aps.58.6709
    [19] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究.  , 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟.  , 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  5702
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-03-31
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map