Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A novel algorithm of fifth-degree cubature Kalman filter for orbit determination at the lower bound approaching to the number of cubature points

Li Zhao-Ming Yang Wen-Ge Ding Dan Liao Yu-Rong

Citation:

A novel algorithm of fifth-degree cubature Kalman filter for orbit determination at the lower bound approaching to the number of cubature points

Li Zhao-Ming, Yang Wen-Ge, Ding Dan, Liao Yu-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With more satellites launched into orbits during recent years, monitoring and cataloging of satellites play an important role in improving the utilization rate of space resource and alleviating the pressure of orbit resource. Groundbased radar, a kind of sensor in space surveillance system, does not consider the influences of the weather and other special circumstances. And it is a key technology in space target tracking by using the measurement data for real-time orbit determination. Due to the influence of orbital perturbation, the satellite orbital dynamic model is a nonlinear system. The optimal estimation of the orbital state can be achieved by means of nonlinear filtering based on the measured ranging, velocity and angle data with measurement noise, which is the essence of real time orbit determination and has important research value. The extended Kalman filter (EKF) and unscented Kalman filter (UKF) are most widely used nonlinear Kalman filters. However, the first-order Taylor expansion of nonlinear function in EKF degrades the filtering accuracy. And the weight value in UKF might be negative for the high-dimensional system, which may directly affect the filtering stability. As an important method in nonlinear filtering, cubature Kalman filter (CKF) has better accuracy and stability than UKF. However, CKF only has third-degree filtering accuracy. In order to improve the filtering accuracy further, some fifth-degree cubature Kalman filters are proposed, mainly including the fifth-degree cubature Kalman filter and the fifth-degree spherical simplex-radial cubature Kalman filter. The optimality of the radial integral cannot be guaranteed by using the moment matching method in these fifth-degree filters, so a high-degree cubature quadrature Kalman filter (HDCQKF) is proposed. The radial integral is calculated using the high-degree Gauss-Laguerre formula in HDCQKF. However, the aforementioned filtering algorithm leads to an increase in the number of cubature points, thereby improving the accuracy, and the number of cubature points increases polynomially with the increase of system dimension. Once the algorithm is applied to a high-dimensional system, or the processor has a relatively poor performance, it may impose a heavier computing burden, thus the real-time performance decreases. Therefore, it is necessary to study how to reduce the computational complexity of the fifth-degree filtering algorithm. In order to improve the real-time performance of orbit determination on condition that the accuracy of orbit determination is kept, a novel fifth-degree cubature Kalman filter for orbit determination is proposed at the lower bound approaching to the number of cubature points. The key problem in the nonlinear Kalman filter is to calculate the multidimensional integral in the form of nonlinear functionGaussian probability density function, and the integral is approximated using a fifth-degree numerical cubature rule, in which the number of cubature points required is only one more than the theoretical lower bound. The abovementioned cubature rule is embedded into the nonlinear Kalman filtering framework, from which the update steps of the novel cubature Kalman filter are derived. Then, the equations of state and measurement for real-time orbit determination are obtained. The J2 perturbation and atmospheric drag perturbation are taken into account in the state equation, and the coordinate transformation is used to derive the nonlinear relationship between the orbital state and measurement element. The simulation results show that the proposed fifth-degree cubature Kalman filter can achieve a higher filtering accuracy than the CKF and the same accuracy as the existing fifth-degree filters, but has the fewest cubature points and the best real-time performance, which proves the effectiveness of the proposed algorithm.
      Corresponding author: Yang Wen-Ge, wengeyang_3@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2015AA7026085).
    [1]

    Ning X, Ye C M, Yang J, Shen B 2014 Chin. J. Radio 29 27 (in Chinese) [宁夏, 叶春茂, 杨健, 沈彬 2014 电波科学学报 29 27]

    [2]

    Abhinoy K S, Shovan B 2014 IEEE International Symposium on Signal Processing and Information Technology Noida, India, December 15-17, 2014 p114

    [3]

    Arasaratnam I, Haykin S 2009 IEEE Trans. Autom. Control 54 1254

    [4]

    Jafar Z, Ehsan S 2015 IET Sci. Meas. Technol. 9 294

    [5]

    Julier S J, Uhlmann J K, Whyte H F D 2000 IEEE Trans. Autom. Control 45 477

    [6]

    Xiong K, Zhang H Y, Chan C W 2006 Automatica 42 261

    [7]

    Zhang L J, Yang H B, Lu H P, Zhang S F, Cai H, Qian S 2014 Acta Astronaut. 105 254

    [8]

    Chen J G, Wang N, Ma L L, Xu B G 2015 IET Radar Sonar Navig. 9 324

    [9]

    Lu Z Y, Wang D M, Wang J H, Wang Y 2015 Acta Phys. Sin. 64 150502 (in Chinese) [逯志宇, 王大鸣, 王建辉, 王跃 2015 64 150502]

    [10]

    Wu H, Chen S X, Yang B F, Chen K 2015 Acta Phys. Sin. 64 218401 (in Chinese) [吴昊, 陈树新, 杨宾峰, 陈坤 2015 64 218401]

    [11]

    Jia B, Xin M, Cheng Y 2012 Automatica 49 510

    [12]

    Jia B, Xin M, Cheng Y 2012 IEEE Conference on Decision and Control Maui Hawaii, USA, December 10-13, 2012 p4095

    [13]

    Huang X Y, Tang X Q, Wu M 2015 Syst. Eng. Electron. 37 633 (in Chinese) [黄湘远, 汤霞清, 武萌 2015 系统工程与电子技术 37 633]

    [14]

    Zhang X C 2014 Circuits Syst. Signal Process 33 1799

    [15]

    Zhang L, Cui N G, Wang X G, Yang F, Lu B G 2015 Acta Aeronaut. Astronaut. Sin. 36 3885 (in Chinese) [张龙, 崔乃刚, 王小刚, 杨峰, 卢宝刚 2015 航空学报 36 3885]

    [16]

    Zhang W J, Wang S Y, Feng Y L, Feng J C 2016 Acta Phys. Sin. 65 088401 (in Chinese) [张文杰, 王世元, 冯亚丽, 冯久超 2016 65 088401]

    [17]

    Zhao L Q, Chen K Y, Wang J L, Yu T 2016 Control Decis. 31 1080 (in Chinese) [赵利强, 陈坤云, 王建林, 于涛 2016 控制与决策 31 1080]

    [18]

    Wang S Y, Feng J C, Tse C K 2014 IEEE Signal Process. Lett. 21 43

    [19]

    Singh A K, Bhaumik S 2015 Int. J. Control Autom. Syst. 13 1097

    [20]

    Lu J, Darmofal D L 2004 SIAM J. Sci. Comput. 26 613

  • [1]

    Ning X, Ye C M, Yang J, Shen B 2014 Chin. J. Radio 29 27 (in Chinese) [宁夏, 叶春茂, 杨健, 沈彬 2014 电波科学学报 29 27]

    [2]

    Abhinoy K S, Shovan B 2014 IEEE International Symposium on Signal Processing and Information Technology Noida, India, December 15-17, 2014 p114

    [3]

    Arasaratnam I, Haykin S 2009 IEEE Trans. Autom. Control 54 1254

    [4]

    Jafar Z, Ehsan S 2015 IET Sci. Meas. Technol. 9 294

    [5]

    Julier S J, Uhlmann J K, Whyte H F D 2000 IEEE Trans. Autom. Control 45 477

    [6]

    Xiong K, Zhang H Y, Chan C W 2006 Automatica 42 261

    [7]

    Zhang L J, Yang H B, Lu H P, Zhang S F, Cai H, Qian S 2014 Acta Astronaut. 105 254

    [8]

    Chen J G, Wang N, Ma L L, Xu B G 2015 IET Radar Sonar Navig. 9 324

    [9]

    Lu Z Y, Wang D M, Wang J H, Wang Y 2015 Acta Phys. Sin. 64 150502 (in Chinese) [逯志宇, 王大鸣, 王建辉, 王跃 2015 64 150502]

    [10]

    Wu H, Chen S X, Yang B F, Chen K 2015 Acta Phys. Sin. 64 218401 (in Chinese) [吴昊, 陈树新, 杨宾峰, 陈坤 2015 64 218401]

    [11]

    Jia B, Xin M, Cheng Y 2012 Automatica 49 510

    [12]

    Jia B, Xin M, Cheng Y 2012 IEEE Conference on Decision and Control Maui Hawaii, USA, December 10-13, 2012 p4095

    [13]

    Huang X Y, Tang X Q, Wu M 2015 Syst. Eng. Electron. 37 633 (in Chinese) [黄湘远, 汤霞清, 武萌 2015 系统工程与电子技术 37 633]

    [14]

    Zhang X C 2014 Circuits Syst. Signal Process 33 1799

    [15]

    Zhang L, Cui N G, Wang X G, Yang F, Lu B G 2015 Acta Aeronaut. Astronaut. Sin. 36 3885 (in Chinese) [张龙, 崔乃刚, 王小刚, 杨峰, 卢宝刚 2015 航空学报 36 3885]

    [16]

    Zhang W J, Wang S Y, Feng Y L, Feng J C 2016 Acta Phys. Sin. 65 088401 (in Chinese) [张文杰, 王世元, 冯亚丽, 冯久超 2016 65 088401]

    [17]

    Zhao L Q, Chen K Y, Wang J L, Yu T 2016 Control Decis. 31 1080 (in Chinese) [赵利强, 陈坤云, 王建林, 于涛 2016 控制与决策 31 1080]

    [18]

    Wang S Y, Feng J C, Tse C K 2014 IEEE Signal Process. Lett. 21 43

    [19]

    Singh A K, Bhaumik S 2015 Int. J. Control Autom. Syst. 13 1097

    [20]

    Lu J, Darmofal D L 2004 SIAM J. Sci. Comput. 26 613

  • [1] Liu Xi-Wang, Zhang Hong-Dan, Ben Shuai, Yang Shi-Dong, Ren Xin, Song Xiao-Hong, Yang Wei-Feng. Feynman path-integral strong-field dynamics calculation method. Acta Physica Sinica, 2023, 72(19): 198701. doi: 10.7498/aps.72.20230451
    [2] Zhu Dong, Xu Han, Zhou Yin, Wu Bin, Cheng Bing, Wang Kai-Nan, Chen Pei-Jun, Gao Shi-Teng, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Qiao Zhong-Kun, Wang Xiao-Long, Lin Qiang. Data processing of shipborne absolute gravity measurement based on extended Kalman filter algorithm. Acta Physica Sinica, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [3] Ding Ming-Song, Jiang Tao, Liu Qing-Zong, Dong Wei-Zhong, Gao Tie-Suo, Fu Yang-Aoxiao. An improved low magnetic Reynolds magnetohydrodynamic method based on computing induced magnetic vector potential by integrating induced current. Acta Physica Sinica, 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [4] Feng Ling, Ji Wan-Ni. Pricing of stochastic volatility stock index option based on Feynman path integral. Acta Physica Sinica, 2019, 68(20): 203101. doi: 10.7498/aps.68.20190714
    [5] Yi Hong, Li Song, Ma Yue, Huang Ke, Zhou Hui, Shi Guang-Yuan. On-orbit calibration of satellite laser altimeters based on footprint detection. Acta Physica Sinica, 2017, 66(13): 134206. doi: 10.7498/aps.66.134206
    [6] He Qiu-Yan, Yuan Xiao. Carlson iterating and rational approximation of arbitrary order fractional calculus operator. Acta Physica Sinica, 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [7] Zhang Wen-Jie, Wang Shi-Yuan, Feng Ya-Li, Feng Jiu-Chao. Huber-based high-degree cubature Kalman tracking algorithm. Acta Physica Sinica, 2016, 65(8): 088401. doi: 10.7498/aps.65.088401
    [8] Wu Hao, Chen Shu-Xin, Yang Bin-Feng, Chen Kun. Robust cubature Kalman filter target tracking algorithm based on genernalized M-estiamtion. Acta Physica Sinica, 2015, 64(21): 218401. doi: 10.7498/aps.64.218401
    [9] Lu Zhi-Yu, Wang Da-Ming, Wang Jian-Hui, Wang Yue. A tracking algorithm based on orthogonal cubature Kalman filter with TDOA and FDOA. Acta Physica Sinica, 2015, 64(15): 150502. doi: 10.7498/aps.64.150502
    [10] Li Yi-Ding, Zhang Peng-Fei, Zhang Hui, Yu Miao. Stationary phase method of calculating Čerenkov radiation spectrum of a charged particle moving in curved path. Acta Physica Sinica, 2013, 62(10): 104103. doi: 10.7498/aps.62.104103
    [11] Xu Feng, Zheng Yu-Jun. Dynamics of entangled trajectories in quantum phase space. Acta Physica Sinica, 2013, 62(21): 213401. doi: 10.7498/aps.62.213401
    [12] Chen Wei-Dong, Liu Yao-Long, Zhu Qi-Guang, Chen Ying. Fuzzy adaptive extended Kalman filter SLAM algorithm based on the improved wild geese PSO algorithm. Acta Physica Sinica, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [13] Ouyang Cheng, Yao Jing Sun, Wen Zhao-Hui, Mo Jia-Qi. Constructing path curve for a class of generalized phase tracks of canard system. Acta Physica Sinica, 2012, 61(3): 030202. doi: 10.7498/aps.61.030202
    [14] Sheng Zheng. Tracking refractivity from radar clutter using extended Kalman filter and unscented Kalman filter. Acta Physica Sinica, 2011, 60(11): 119301. doi: 10.7498/aps.60.119301
    [15] Li Rong, Wu Xin. A symmetric product of two optimal third-order force gradient symplectic algorithms. Acta Physica Sinica, 2010, 59(10): 7135-7143. doi: 10.7498/aps.59.7135
    [16] Zheng Shi-Wang, Jia Li-Qun. Local energy integral of Birkhoffian systems. Acta Physica Sinica, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [17] LIU SI-MIN, ZHANG GUANG-YIN, RONG FANG, WU SI-JIA, KANG WIE, LIU QIU-XIANG. THE ANOMALOUS VIOLET-SHIFT OF ABSORPTION EDGE OF LiNbO3 CRYSTALS OF THE SOLID-LIQUID CONGRUENT POINT COMPOSITION. Acta Physica Sinica, 1985, 34(2): 275-279. doi: 10.7498/aps.34.275
    [18] LIU LIAO. FEYNMAN'S PATH-INTEGRAL METHOD AND HAWKING EVAPORATION. Acta Physica Sinica, 1982, 31(4): 519-524. doi: 10.7498/aps.31.519
    [19] WANG REN-CHUAN. INTEGRALS OF PRODUCTS OF AIRY FUNCTIONS. Acta Physica Sinica, 1981, 30(1): 74-83. doi: 10.7498/aps.30.74
    [20] . Acta Physica Sinica, 1975, 24(3): 215-222. doi: 10.7498/aps.24.215
Metrics
  • Abstract views:  5507
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  27 February 2017
  • Accepted Date:  01 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回
Baidu
map