-
High power microwave (HPM) has important applications in controlled thermonuclear fusion heating, microwave high-gradient accelerator, high-power radar, directed-energy weapon, super jammer, impact radar, etc. The window breakdown of HPM has been extensively studied, and some research progress in this respect has been made. However, the researches on the transition of window breakdown from multipactor discharge to rf plasma are still not enough in-depth. Especially, the influences of microwave frequency and microwave amplitude during breakdown need further studying. This paper focuses on the process of dielectric multipactor and background argon ionization during the discharge breakdown near the HPM dielectric window/vacuum interface. A one-dimensional-spatial-distribution-and-three-dimensional-velocity-distribution (1D3V) electrostatic model with using particle-in-cell simulation is adopted in present work. The model includes secondary electron emission, electrostatic field induced by the remaining positive charge on the dielectric window, the motion of charged particles under electrostatic and microwave field, and the collision process between electron and background gas, and the corresponding PIC/MCC code is also developed. We examine the effects of gas pressure, microwave frequency and microwave amplitude on discharge breakdown. It is found that there exists only electron multipactor process during the discharge breakdown on dielectric window in vacuum. At low pressures (10 mTorr, 500 mTorr) and slightly high pressure (10 Torr), electron multipactor and gas ionization are coexistent. However, at an extremely high pressure (760 Torr), the gas ionization dominates the breakdown process. At the same time, the position of plasma density peak moves away from the dielectric window as the gas pressure increases, which is the consequence of the competition between secondary electron multiplication on the dielectric window and gas ionization in the body region. It can be seen that the advantage of gas ionization gradually increases as the gas pressure increases. In addition, it is also observed that at 500 mTorr, the moment of gas ionization moves forward first and then backward with the increase of the microwave amplitudes or the microwave frequency, especially when the increment of frequency is numerically twice that of the amplitude, gas ionization occurs earliest. This phenomenon is explained by the secondary electron emission model. Meanwhile, the results show that the position of plasma density peak from gas ionization gradually approaches to the dielectric window as the microwave amplitude increases. However, with continually increasing the microwave frequency, the plasma density peak moves away from the dielectric window first and then approaches to the dielectric window.
-
Keywords:
- high-power microwaves /
- particle-in-cell /
- Monte Carlo method /
- secondary electron multipactor
[1] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Wiley-IEEE Press) pp310-380
[2] Benford J, Swegle J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwave (Beijing: National Defense Industry Press) pp1-48 (in Chinese) [本福德J, 史瓦格 J A, 沙米洛格鲁 E著(江伟华, 张弛 译) 2009高功率微波(北京: 国防工业出版社)第1–48页]
[3] Chang C 2016 High Power Microwave System Breakdown in the Physical (Beijing: Science Press) pp1-150 (in Chinese) [常超 2016 高功率微波系统中的击穿物理(北京:科学出版社) 第1–150页]
[4] Neuber A, Hemmert D, Krompholz H, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724
[5] Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296
[6] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[7] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[8] Kim H C, Verboncoeur J P 2007 IEEE Trans. Dielectr. Electr. Insul. 14 766
[9] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[10] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502
[11] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305
[12] Chang C, Liu G Z, Tang C X, Chen C H, Fang J Y 2011 Phys. Plasmas 18 055702
[13] Chang C, Liu G Z, Tang C X, Chen C H, Qiu S, Fang J Y, Hou Q 2008 Phys. Plasmas 15 093508
[14] Chang C, Verboncoeur J, Tantawi S, Jing C 2011 J. Appl. Phys. 110 063304
[15] Chang C, Zhu M, Verboncoeur J, Li S, Xie J L, Yan K, Luo T D, Zhu X X 2014 Appl. Phys. Lett. 104 253504
[16] Hao X W, Zhang G H, Huang W H, Qiu S, Chen C H, Fang J Y 2010 High Power Laser and Particle Beams 22 0099 (in Chinese) [郝西伟, 张冠军, 黄文华, 秋实, 陈昌华, 方进勇 2010 强激光与粒子束 22 0099]
[17] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 58 3268]
[18] Cai L B, Wang J G, Zhu X Q 2011 Acta Phys. Sin. 60 085101 (in Chinese) [蔡利兵, 王建国, 朱湘琴 2011 60 085101]
[19] Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 61 075101]
[20] Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国 2011 60 025217]
[21] Cheng G X, Liu L 2011 IEEE Trans. Plasma Sci. 39 1067
[22] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 1917 (in Chinese) [董烨, 董志伟, 杨温渊 2011 强激光与粒子束 23 1917]
[23] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011 强激光与粒子束 23 454]
[24] Dong Y, Zhou Q H, Dong Z W, Yang W Y, Zhou H J, Sun H F 2013 High Power Laser and Particle Beams 25 950 (in Chinese) [董烨, 周前红, 董志伟, 杨温渊, 周海京, 孙会芳 2013 强激光与粒子束 25 950]
[25] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 63 027901]
[26] Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 Acta Phys. Sin. 62 197901 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 62 197901]
[27] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 2653 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 2653]
[28] Dong Y, Zhou Q H, Yang W Y, Dong Z W, Zhou H J, Liu Q X 2016 High Power Laser and Particle Beams 28 033004 (in Chinese) [董烨, 周前红, 杨温渊, 董志伟, 周海京, 刘庆想 2016 强激光与粒子束 28 033004]
[29] Vaughan R 1993 IEEE Trans. Electron Dev. 40 830
[30] Atomic Molecular Data Services, the Nuclear Data Section of the International Atomic Energy Agency, Vienna, Austria https://www-amdis iaea org/ [2018-9-16]
[31] Chang C, Verboncoeur J, Guo M N, Zhu M, Song W, Li S, Chen C H, Bai X C, Xie J L 2014 Phys. Rev. E 90 063107
-
[1] Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Wiley-IEEE Press) pp310-380
[2] Benford J, Swegle J A, Schamiloglu E (translated by Jiang W H, Zhang C) 2009 High Power Microwave (Beijing: National Defense Industry Press) pp1-48 (in Chinese) [本福德J, 史瓦格 J A, 沙米洛格鲁 E著(江伟华, 张弛 译) 2009高功率微波(北京: 国防工业出版社)第1–48页]
[3] Chang C 2016 High Power Microwave System Breakdown in the Physical (Beijing: Science Press) pp1-150 (in Chinese) [常超 2016 高功率微波系统中的击穿物理(北京:科学出版社) 第1–150页]
[4] Neuber A, Hemmert D, Krompholz H, Krompholz H, Hatfield L, Kristiansen M 1999 J. Appl. Phys. 86 1724
[5] Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296
[6] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[7] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach R M 1998 Phys. Plasmas 5 2120
[8] Kim H C, Verboncoeur J P 2007 IEEE Trans. Dielectr. Electr. Insul. 14 766
[9] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[10] Nam S K, Verboncoeur J P 2008 Appl. Phys. Lett. 92 231502
[11] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305
[12] Chang C, Liu G Z, Tang C X, Chen C H, Fang J Y 2011 Phys. Plasmas 18 055702
[13] Chang C, Liu G Z, Tang C X, Chen C H, Qiu S, Fang J Y, Hou Q 2008 Phys. Plasmas 15 093508
[14] Chang C, Verboncoeur J, Tantawi S, Jing C 2011 J. Appl. Phys. 110 063304
[15] Chang C, Zhu M, Verboncoeur J, Li S, Xie J L, Yan K, Luo T D, Zhu X X 2014 Appl. Phys. Lett. 104 253504
[16] Hao X W, Zhang G H, Huang W H, Qiu S, Chen C H, Fang J Y 2010 High Power Laser and Particle Beams 22 0099 (in Chinese) [郝西伟, 张冠军, 黄文华, 秋实, 陈昌华, 方进勇 2010 强激光与粒子束 22 0099]
[17] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268 (in Chinese) [蔡利兵, 王建国 2009 58 3268]
[18] Cai L B, Wang J G, Zhu X Q 2011 Acta Phys. Sin. 60 085101 (in Chinese) [蔡利兵, 王建国, 朱湘琴 2011 60 085101]
[19] Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 61 075101]
[20] Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217 (in Chinese) [蔡利兵, 王建国 2011 60 025217]
[21] Cheng G X, Liu L 2011 IEEE Trans. Plasma Sci. 39 1067
[22] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 1917 (in Chinese) [董烨, 董志伟, 杨温渊 2011 强激光与粒子束 23 1917]
[23] Dong Y, Dong Z W, Yang W Y 2011 High Power Laser and Particle Beams 23 454 (in Chinese) [董烨, 董志伟, 杨温渊 2011 强激光与粒子束 23 454]
[24] Dong Y, Zhou Q H, Dong Z W, Yang W Y, Zhou H J, Sun H F 2013 High Power Laser and Particle Beams 25 950 (in Chinese) [董烨, 周前红, 董志伟, 杨温渊, 周海京, 孙会芳 2013 强激光与粒子束 25 950]
[25] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 63 027901]
[26] Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 Acta Phys. Sin. 62 197901 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 62 197901]
[27] Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 2653 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 2653]
[28] Dong Y, Zhou Q H, Yang W Y, Dong Z W, Zhou H J, Liu Q X 2016 High Power Laser and Particle Beams 28 033004 (in Chinese) [董烨, 周前红, 杨温渊, 董志伟, 周海京, 刘庆想 2016 强激光与粒子束 28 033004]
[29] Vaughan R 1993 IEEE Trans. Electron Dev. 40 830
[30] Atomic Molecular Data Services, the Nuclear Data Section of the International Atomic Energy Agency, Vienna, Austria https://www-amdis iaea org/ [2018-9-16]
[31] Chang C, Verboncoeur J, Guo M N, Zhu M, Song W, Li S, Chen C H, Bai X C, Xie J L 2014 Phys. Rev. E 90 063107
Catalog
Metrics
- Abstract views: 6564
- PDF Downloads: 109
- Cited By: 0