-
介质微放电已经成为制约航天器有效载荷地面研制和在轨可靠运行的重要因素. 本文对航天器环境模拟试验中真空罐穿舱法兰介质表面单边微放电进行了实验研究, 在周期性脉冲信号激励下, 观察到调零信号间歇性局部跳变的现象. 采用三维粒子模拟工具对微放电从起始到饱和的演化过程进行了数值模拟, 结合模拟结果给出了实验现象的物理解释及若干讨论. 研究表明, 在本文采用的脉冲信号配置参数下介质单表面微放电在脉冲内建立并达到饱和、在两个相邻脉冲之间没有射频信号的时段“熄灭”. 所得结果对介质微放电的理论研究和高功率介质微波部件的工程设计具有重要的意义.The potential, unexpected occurrence of dielectric multipactor on the dielectric surfaces in high-power radio frequency and microwave components has become a severe constraint in the research and development of space-borne payloads of space vehicles such as satellites and space stations on the ground and their long-term reliable operations in the orbit. In this experimental research, the single-surface multipactor occurring on the dielectric surface of a penetration flange originally designed for a vacuum chamber used in environmental simulation tests of spacecraft is experimentally investigated and compared with the corresponding full-wave simulated results. Under the excitation of periodic pulsed sinusoidal signals, the unusual experimental phenomena of intermittent local jumps of nulling signals in the process of multipactor are repeatedly observed based on an agile nulling experimental system. Taking advantage of the full-wave, three-dimensional (3D) particle-in-cell simulation tool, CST Particle Studio, the entire evolution process of the dielectric multipactor, from its onset to its saturation, is simulated and carefully examined. Combining the results obtained by full-wave 3D particle simulations, some physical explanations and discussion on such phenomena are presented. It is found that under the configuration parameters of pulse signals adopted in this multipactor experiment, the transition of a single-surface dielectric multipactor from its onset to the saturation state can be finished within a single pulse. However, its transition from the saturation state to turning off can last between consecutive pulses in the absence of any high-power radio frequency signals. The obtained result is important for both the theoretical study and the engineering development of high-power dielectric components, providing a new understanding of the dielectric multipactor occurring under the excitation of pulsed high-power electric fields.
-
Keywords:
- penetration flange /
- dielectric multipactor /
- experimental study /
- particle-in-cell
[1] Woode A, Petit J 1990 ESA J. 14 467Google Scholar
[2] Rozario N, Lenzing H F, Reardon K F, Zarro M S, Baran C G 1994 IEEE Trans. Microwave Theory Tech. 42 558Google Scholar
[3] Yu M 2007 IEEE Microwave Mag. 8 88Google Scholar
[4] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach, R M 1998 Phys. Plasmas 5 2120Google Scholar
[5] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193Google Scholar
[6] Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702Google Scholar
[7] Hatch A J 1966 Nucl. Instrum. Methods 41 261Google Scholar
[8] Power J G, Gai W, Gold S H, et al. 2004 Phys. Rev. Lett. 92 164801Google Scholar
[9] Neuber A, Hemmert D, Krompholz H, et al. 1999 J. Appl. Phys. 86 1724Google Scholar
[10] Chang C, Zhu M, Verboncoeur J, et al. 2014 Appl. Phys. Lett. 104 253504Google Scholar
[11] Iqbal A, Wong P Y, Wen D Q, et al. 2020 Phys. Rev. E 102 043201Google Scholar
[12] Neuber A, Butch M, Krompholz H, et al. 2000 IEEE Trans. Plasma Sci. 28 1593Google Scholar
[13] Anderson R B, Getty W D, Brake M L, et al. 2001 Rev. Sci. Instrum. 72 3095Google Scholar
[14] Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290Google Scholar
[15] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504Google Scholar
[16] Sazontov A, Semenov V, Buyanova M, et al. 2005 Phys. Plasmas 12 093501Google Scholar
[17] Shen F Z, Wang X B, Cui W Z, Ran L X 2020 IEEE Trans. Plasma Sci. 48 433Google Scholar
[18] Zhang Z Y, Sun Y Z, Cui W Z, et al. 2019 IEEE Trans. Electron Devices 66 4921Google Scholar
[19] 董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 62 197901Google Scholar
Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 Acta Phys. Sin. 62 197901Google Scholar
[20] 张雪, 王勇, 范俊杰, 张瑞 2014 63 227901Google Scholar
Zhang X, Wang Y, Fan J J, Zhang R 2014 Acta Phys. Sin. 63 227901Google Scholar
[21] Langellotti S V, Jordan N M, Lau Y Y, et al. 2020 IEEE Trans. Plasma Sci. 48 1942Google Scholar
[22] Hemmert D, Neuber A, Dickens J, et al. 2000 IEEE Trans. Plasma Sci. 28 472Google Scholar
[23] Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172Google Scholar
[24] Wang X B, Shen J H, Wang J Y, et al. 2017 IEEE Trans. Microwave Theory Tech. 65 2734Google Scholar
-
-
[1] Woode A, Petit J 1990 ESA J. 14 467Google Scholar
[2] Rozario N, Lenzing H F, Reardon K F, Zarro M S, Baran C G 1994 IEEE Trans. Microwave Theory Tech. 42 558Google Scholar
[3] Yu M 2007 IEEE Microwave Mag. 8 88Google Scholar
[4] Kishek R A, Lau Y Y, Ang L K, Valfells A, Gilgenbach, R M 1998 Phys. Plasmas 5 2120Google Scholar
[5] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193Google Scholar
[6] Chang C, Liu G, Tang C, Chen C, Fang J 2011 Phys. Plasmas 18 055702Google Scholar
[7] Hatch A J 1966 Nucl. Instrum. Methods 41 261Google Scholar
[8] Power J G, Gai W, Gold S H, et al. 2004 Phys. Rev. Lett. 92 164801Google Scholar
[9] Neuber A, Hemmert D, Krompholz H, et al. 1999 J. Appl. Phys. 86 1724Google Scholar
[10] Chang C, Zhu M, Verboncoeur J, et al. 2014 Appl. Phys. Lett. 104 253504Google Scholar
[11] Iqbal A, Wong P Y, Wen D Q, et al. 2020 Phys. Rev. E 102 043201Google Scholar
[12] Neuber A, Butch M, Krompholz H, et al. 2000 IEEE Trans. Plasma Sci. 28 1593Google Scholar
[13] Anderson R B, Getty W D, Brake M L, et al. 2001 Rev. Sci. Instrum. 72 3095Google Scholar
[14] Ang L K, Lau Y Y, Kishek R A, Gilgenbach R M 1998 IEEE Trans. Plasma Sci. 26 290Google Scholar
[15] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504Google Scholar
[16] Sazontov A, Semenov V, Buyanova M, et al. 2005 Phys. Plasmas 12 093501Google Scholar
[17] Shen F Z, Wang X B, Cui W Z, Ran L X 2020 IEEE Trans. Plasma Sci. 48 433Google Scholar
[18] Zhang Z Y, Sun Y Z, Cui W Z, et al. 2019 IEEE Trans. Electron Devices 66 4921Google Scholar
[19] 董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 62 197901Google Scholar
Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 Acta Phys. Sin. 62 197901Google Scholar
[20] 张雪, 王勇, 范俊杰, 张瑞 2014 63 227901Google Scholar
Zhang X, Wang Y, Fan J J, Zhang R 2014 Acta Phys. Sin. 63 227901Google Scholar
[21] Langellotti S V, Jordan N M, Lau Y Y, et al. 2020 IEEE Trans. Plasma Sci. 48 1942Google Scholar
[22] Hemmert D, Neuber A, Dickens J, et al. 2000 IEEE Trans. Plasma Sci. 28 472Google Scholar
[23] Vaughan J R M 1988 IEEE Trans. Electron Devices 35 1172Google Scholar
[24] Wang X B, Shen J H, Wang J Y, et al. 2017 IEEE Trans. Microwave Theory Tech. 65 2734Google Scholar
计量
- 文章访问数: 4115
- PDF下载量: 45
- 被引次数: 0