-
It is important to measure rainfall accurately with high spatial and temporal resolution in meteorology, hydrology, agriculture industry, environment conservation, flood warning and weather forecasting. The use of attenuated information about microwave propagation in rainfall areas to acquire surface precipitation intensity has been shown to be a practical approach to measuring rainfall in recent years. However, the inversion of a single-frequency link is based on the assumption of rainfall attenuation under a certain frequency condition. Further, obtaining parameters that comply with all rainfall events for the rainfall attenuation model is a challenge, often leading to an overestimation of the rainfall intensity. Therefore, based on extended boundary condition method and Gamma raindrop size distribution, an inversion method of the path rainfall intensity by using a microwave link rain-induced attenuation is proposed in order to improve the accuracy of rainfall measurement by microwave rain-induced attenuation. In this paper, we use the characteristics of an atmospheric attenuation model to eliminate the influence of non-rainfall-caused attenuation on the process of rainfall inversion. On the basis of scattering theory and by utilizing the Gamma raindrop size drop, we use the extended boundary condition method to calculate the characteristics of microwave attenuation for Pruppacher-Beard raindrop shape model. The correction model of rainfall effective attenuation and rainfall inversion model of line-of-sight microwave links are proposed, based on the microwave rain attenuation characteristics and raindrop size distribution statistics. In this paper, we propose 15-20 GHz inversion model of path-average rainfall intensity based on nonspherical rain-induced model by using Levenberg-Marquardt optimization algorithm. Meanwhile, we analyze the variations of parameters of rain-induced model under the condition of different temperatures. Besides, we design a line-of-sight microwave experimental system for measuring the rainfall, and the path average rain rate is inversed by rainfall inversion model, which is compared with an OTT disdrometer. The results show that the correlation coefficient of rain rate inversed by microwave link and that of disdrometer are both higher than 0.6 mostly, and the maximum value is 0.96; the error of accumulated rain amount is less than 2.47 mm, the minimum value is 0.28 mm; the relative error of accumulated rain amount is less than 1.84%, the minimum value is 0.44%. The experimental results validate the feasibility and accuracy of rainfall inversion method proposed in this paper. In addition, the experimental result reflects that rainfall intensity retrieved method based on nonspherical raindrop model has advantages over the method based on spherical raindrop model.
-
Keywords:
- rain-induced microwave attenuation measurements /
- microwave link /
- inversion of rain rate /
- extended boundary condition method
[1] Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]
[2] L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]
[3] Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]
[4] Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]
[5] Messer H, Zinevich A, Alpert P 2006 Science 312 713
[6] Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745
[7] Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616
[8] Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32
[9] David N, Alpert P, Messer H 2013 Atmos. Res. 131 13
[10] Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741
[11] Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]
[12] Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 63 199201]
[13] Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 62 154303]
[14] Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]
[15] Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 64 174301]
[16] International Telecommunication Union 2005 Rec. ITU-R P.838-3
[17] Pruppacher H R, Beard K V 1970 J. Quart. J. R. Met. Soc. 96 247
[18] Michael I M, Larry D T 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309
[19] Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]
[20] Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]
[21] Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]
[22] Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley Sons Inc.) p279
[23] Somerville W R C, Auguie B, Ru E C L 2013 J. Quant. Spectrosc. Radiat. Transfer 123 153
[24] David C H, Chu T S 1975 Proc. IEEE 63 1308
[25] Lampton M 1997 Comput. Phys. 11 110
-
[1] Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]
[2] L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]
[3] Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]
[4] Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]
[5] Messer H, Zinevich A, Alpert P 2006 Science 312 713
[6] Feng G L, Gong Z Q, Zhi R, Zhang D Q 2008 Chin. Phys. B 17 2745
[7] Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616
[8] Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32
[9] David N, Alpert P, Messer H 2013 Atmos. Res. 131 13
[10] Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741
[11] Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]
[12] Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 63 199201]
[13] Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 62 154303]
[14] Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]
[15] Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 64 174301]
[16] International Telecommunication Union 2005 Rec. ITU-R P.838-3
[17] Pruppacher H R, Beard K V 1970 J. Quart. J. R. Met. Soc. 96 247
[18] Michael I M, Larry D T 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309
[19] Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]
[20] Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]
[21] Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]
[22] Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley Sons Inc.) p279
[23] Somerville W R C, Auguie B, Ru E C L 2013 J. Quant. Spectrosc. Radiat. Transfer 123 153
[24] David C H, Chu T S 1975 Proc. IEEE 63 1308
[25] Lampton M 1997 Comput. Phys. 11 110
Catalog
Metrics
- Abstract views: 5614
- PDF Downloads: 141
- Cited By: 0