搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1085 km实地光纤链路的双波长光纤时间同步研究

陈法喜 赵侃 李博 刘博 郭新兴 孔维成 陈国超 郭宝龙 刘涛 张首刚

引用本文:
Citation:

基于1085 km实地光纤链路的双波长光纤时间同步研究

陈法喜, 赵侃, 李博, 刘博, 郭新兴, 孔维成, 陈国超, 郭宝龙, 刘涛, 张首刚

High-precision dual-wavelength time transfer via1085-km telecommunication fiber link

Chen Fa-Xi, Zhao Kan, Li Bo, Liu Bo, Guo Xin-Xing, Kong Wei-Cheng, Chen Guo-Chao, Guo Bao-Long, Liu Tao, Zhang Shou-Gang
PDF
HTML
导出引用
  • 在长距离高精度光纤时间同步系统中, 为了减少后向反射光与光纤色散对传输精度的影响, 本文在双波长光纤时间同步传输方法之上, 提出了一种具有色散误差修正功能的双波长光纤时间同步传输方法. 以自行研制的工程样机在长度约为800 km的实验室光纤链路上和1085 km的实地光纤链路上进行了实验测试, 也是国内首次实现千公里级实地光纤时间同步传输. 在实验室光纤链路上, 测得传输链路色散补偿后的色散时延误差为10 ps, 时间同步标准差为5.7 ps, 稳定度为1.12 ps@105 s, 不确定度为18.4 ps. 在实地光纤链路上, 测得传输链路色散补偿后的色散时延误差为60 ps, 时间同步标准差为18 ps, 稳定度为5.4 ps@4 × 104 s, 不确定度为63.5 ps.
    To reduce the influence of fiber dispersion on accuracy of fiber-based time synchronization, a method of dispersion-error corrected dual-wavelength time synchronization is proposed in this paper. Specificlly, the method is to measure the dispersion coefficient of the fiber link, and then input it to each remote terminal, the time delay error caused by the fiber dispersion is eliminated through the delay phase controller. With the self-developed engineering prototypes, the experimental verifications are subsequently made both in laboratory and real field. Before the test, 16 devices of time synchronization are connected in series for calibration. The time synchronization system is able to keep delay difference within ± 15 ps after being calibrated. In the laboratory, the experimental setup is built by cascading 16 rolls of 50km-long fiber coils, and the total length of the fiber link is 800 km. The experimental results show that the dispersion coefficient of 800 km fiber link is 13.36 ps/(km·nm), and the delay error caused by dispersion is maintained within 10 ps after correction. The stability of the time transfer is 5.7 ps in standard deviation and the time deviation is 1.12 ps at an averaging time of 100000 s. In the real field test, a 1085-km-long field fiber link is utilized, along which 16 self-developed time-frequency transceiversare set at the cascaded fiber-optic stations. After being corrected with a dispersion coefficient of 16.67 ps/(km·nm) for 1085 km urban fiber link, the time transfer is demonstrated to have a dispersion-caused delay error of 60 ps. The experimental results show that the time standard deviation is 18 ps and the time transfer instability is 9.2 ps at an averaging time of 1 s and 5.4 ps at an averaging time of 40000 s. Finally, the time uncertainty of 800-km-long laboratory optical fiber link and 1085-km-long urban optical fiber link are evaluated, and the time uncertainty is 18.4 ps and 63.5 ps, respectively. This work paves the way for constructing the time synchronization fiber network in China. To further reduce the delay error caused by dispersion in a long-distance time transfer link, the more accurate thermal control of the lasers should be adopted to reduce the shifts of forward and backward wavelengths.
      通信作者: 陈法喜, cfx2006xd@163.com ; 赵侃, zhaokan@ntsc.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFF0200200)、国家自然科学基金(批准号: 91636101, 91836301, 11803041)、中国科学院战略先导B专项(批准号: XDB21000000)和广东省重点领域研发计划(批准号: 2018B030325001)资助的课题
      Corresponding author: Chen Fa-Xi, cfx2006xd@163.com ; Zhao Kan, zhaokan@ntsc.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFF0200200), the National Natural Science Foundation of China (Grant Nos. 91636101, 91836301, 11803041), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21000000), and the Key R& D Program of Guangdong Province, China (Grant No. 2018B030325001)
    [1]

    He W, Lian B, Yang Q 2013 Proceedings of 2013 IEEE International Conference of IEEE Region 10 Xi’an, China, October 23−25, 2013 p1

    [2]

    Lau K Y, Lutes G F, Tjoelker R L 2014 J. Lightwave Technol. 20 3440

    [3]

    Krehlik P, Buczek L, Kołodziej J, Lipinski M, Sliwczynski L, Nawrocki J, Nogas P, Marecki A, Pazderski E, Ablewski P, Bober M, Ciuryło R, Cygan A, Lisak D, Maslowski P, Morzynski P, Zawada P M, Campbell R M, Pieczerak J, Binczewski A, Turza K 2017 Astron. Astrophy. 60 3

    [4]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hansch T W 2011 Phys. Rev. Lett. 107 203001Google Scholar

    [5]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [6]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801Google Scholar

    [7]

    Lewandowski W, Thomas C 1991 Proc. IEEE 79 991Google Scholar

    [8]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163Google Scholar

    [9]

    Jiang Z 2009 Proceedings of 2009 Frequency Control Symposium & the 22nd European Frequency and Time forum Besancon, France, April 20−24, 2009 p1194

    [10]

    Chu F D, Tseng W H, Hsu W C, Ting P Y 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, China, May 19−22, 2014 p11

    [11]

    Kong Y, Yang X H, Qin W J, Cao F, Li Z G, Sun B Q, Chang H 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, China, May 19−22, 2014 p1

    [12]

    Guagn W, Dong S, Wu W, Zhang J, Yuan H, Zhang S 2018 Metrologia 55 175Google Scholar

    [13]

    Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S, Jefferts S R 2014 Metrologia 51 174Google Scholar

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar

    [15]

    Ebenhag S C 2008 Proceedings of the 22nd European Frequency and Time Forum Toulouse, France, April 22–25, 2008 p23

    [16]

    Piester D, Fujieda M, Rost M, Bauch A 2009 41st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting Santa Ana Pueblo, America, November 16−19, 2009 p16

    [17]

    Smotalacha V, Kuna A, Mache W 2010 Proceedings of the 42nd Annual Precise Time and Time Interval Meeting Reston, America, November 16−19, 2010 p427

    [18]

    Schnatz H 2012 Conference on Precision Electromagnetic Measurement Washington DC, America, July 1−6, 2012 p185

    [19]

    Akiyama T, Matsuzawa H, Haraguchi E, Ando T, Hirano Y 2012 Microwave Symposium Digest. IEEE/MTT-S International Montreal, Canada, June 17–22, 2012, p1

    [20]

    Smotlacha V, Kuna A, Mache W 2010 EFTF-2010 24th European Frequency and Time Forum Noordwijk, Netherlands, April 13–16, 2010 p1

    [21]

    Dierikx E F, Wallin A E, Fordell T, Myyry J, Koponen P, Merimaa M, Pinkert T, Koelemeij J C, Peek H Z, Smets R 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 945Google Scholar

    [22]

    Turza K, Krehlik P, Siwczynski L 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 4 797

    [23]

    Cheng H, Wu G L, Zuo F, Hu L, Chen J 2019 Opt. Lett. 21 5206

    [24]

    李得龙, 程清明, 张宝富, 卢麟, 雷平纪, 李晓亚 2014 激光与光电子进展 51 010602

    Li D L, Cheng Q M, Zhang B F, Lu L, Lei P J, Li X Y 2014 Laser and Photo-electronic Progress 51 010602

    [25]

    吴龟灵, 陈建平 2016 科技导报 34 99Google Scholar

    Wu G L, Chen J P 2016 Science and Technology Herald 34 99Google Scholar

    [26]

    Gao C, Wang B, Zhu X, ChenW L, Bai Y, Miao J, Zhu X, Li T C, Wang L J 2012 Opt. Lett. 37 4690Google Scholar

    [27]

    Chen W, Liu Q, Cheng N, Xu D, Yang F, Gui Y Z, Cai H W 2015 IEEE Photonics J. 7 7901609

    [28]

    刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 刘涛, 张首刚 2015 64 120602Google Scholar

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602Google Scholar

    [29]

    Deng X, Jiao D D, Liu J, Zang Q, Zhang X, Wang D, Gao J, Dong R F, Liu T, Zhang S G 2015 Chin Phys. B 24 054205Google Scholar

    [30]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601Google Scholar

    [31]

    陈法喜, 赵侃, 周旭, 刘涛, 张首刚 2017 20 200701Google Scholar

    Chen F X, Zhao K, Zhou X, Liu T, Zhang S G 2017 Acta Phys. Sin. 20 200701Google Scholar

    [32]

    Wang J, Yue C, Xi Y, Sun Y, Cheng N, Yang F, Jiang M, Sun J, Gui Y, Cai H 2020 Opt. Lett. 1 208

  • 图 1  双波长光纤时间同步原理图(λ1, λ2, 激光波长)

    Fig. 1.  Schematic diagram of dual wavelength time transfer. ($ {\lambda }_{1} $, $ {\lambda }_{2} $, Laser wavelength).

    图 2  双波长光纤时间同步装置图(OEO: 光-电-光信号净化处理模块; λ1, λ2: 激光波长; PLL: 锁相环)

    Fig. 2.  Device diagram of dual wavelength time transfer. (OEO: Optical-electric-optical signal purification and processing module; λ1, λ2: Laser wavelength; PLL: Phase locked loop).

    图 3  实验室测试连接图

    Fig. 3.  Scheme of laboratory test.

    图 4  实验室光纤链路的时间同步测量结果 (a)光纤链路的时差测量结果(蓝色曲线: 系统噪底. 黑色曲线: 800 km实验室光纤链路); (b)光纤链路的时间同步稳定度测量结果(蓝色曲线: 系统噪底; 红色曲线: 800 km实验室光纤链路)

    Fig. 4.  Time synchronization measurement results of the laboratory fiber link: (a) The measured time interval variation results of the laboratory fiber link (bule line: noise floor of the system; black line: 800 km fiber link in laboratory): (b) the measured time deviation results of the laboratory fiber link (bule line: noise floor of the system; black line: 800 km fiber link in laboratory).

    图 5  实地光纤链路地理位置

    Fig. 5.  Geographical distribution of the field fiber link.

    图 6  1085 km实地光纤链路的时间同步测量结果 (a)光纤链路的时差测量结果(黑色曲线: 自由运转链路, 蓝色曲线: 补偿后的链路); (b)补偿后链路的时间同步稳定度测量结果

    Fig. 6.  Time synchronization measurement results of 1085 km field fiber link: (a) The measured time interval variation results of the laboratory fiber link (black line: free running fiber link; blue line: compensated fiber link); (b) the measured time deviation results of the field fiber link after compensated.

    表 1  各个站点设备时延误差测量结果

    Table 1.  Measurement results of equipment delay error in each station.

    编号校准前/ps校准后/ps 编号校准前/ps校准后/ps
    1245312 9183547
    24669–5102032313
    36056101122340–11
    48375812240986
    59950–1013256375
    61214491428031–8
    713993–61529992–12
    8160581116318628
    下载: 导出CSV

    表 2  800 km实验室光纤链路的详细参数

    Table 2.  Detailed parameters of 800 km fiber link in the laboratory.

    距离/km偏差/ps色散系数/(ps·km–1·ns–1)校准后/ps 距离/km偏差/ps色散系数/(ps·km–1·ns–1)校准后/ps
    5026713.4519450242813.5916
    10053013.35–5500268313.52–19
    15079913.41–10550294613.49–9
    200107013.4715600320613.4617
    250134113.53–12650346613.4318
    300161313.54–14700371513.3713
    350189113.61–17750399613.4216
    400217113.6711800424313.3610
    下载: 导出CSV

    表 3  1085 km实地光纤链路各个站点的详细参数

    Table 3.  Detailed parameters of the individual sites in the 1085 km field fiber link.

    编号站点距离/km衰减/dB
    1临潼00
    2二长41.6912
    3捞浴72.7521
    4筒车湾81.9021
    5洋县76.5019
    6汉中60.4816
    7勉县60.5516
    8宁强73.2019
    9勉县73.2019
    10宁强74.3219
    11勉县74.3219
    12汉中60.5516
    13洋县60.4816
    14筒车湾76.5019
    15捞浴81.9021
    16一长72.7521
    17临潼41.6912
    总计1085287.5
    下载: 导出CSV

    表 4  光纤时间传递不确定度分析

    Table 4.  The uncertainty analysis of the fiber synchronized timing signal.

    误差源误差估计值/ps
    800 km
    实验室光纤
    1085 km
    实地光纤
    本地端和远程端设
    备时延温漂/$ {u}_{\mathrm{D}\mathrm{T}} $
    6.012.0
    时差测量的误差/$ {u}_{\mathrm{T}\mathrm{I}\mathrm{M}} $10.010.0
    激光器波长误差/$ {u}_{∆\lambda } $8.013.6
    光纤色散系数测量
    误差/${ {u}_{D} }_{{\rm{err}}}$
    11.556.8
    光纤色散系数温度
    漂移/$ {u}_{\Delta D} $
    2.919.5
    总不确定度18.463.5
    下载: 导出CSV
    Baidu
  • [1]

    He W, Lian B, Yang Q 2013 Proceedings of 2013 IEEE International Conference of IEEE Region 10 Xi’an, China, October 23−25, 2013 p1

    [2]

    Lau K Y, Lutes G F, Tjoelker R L 2014 J. Lightwave Technol. 20 3440

    [3]

    Krehlik P, Buczek L, Kołodziej J, Lipinski M, Sliwczynski L, Nawrocki J, Nogas P, Marecki A, Pazderski E, Ablewski P, Bober M, Ciuryło R, Cygan A, Lisak D, Maslowski P, Morzynski P, Zawada P M, Campbell R M, Pieczerak J, Binczewski A, Turza K 2017 Astron. Astrophy. 60 3

    [4]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hansch T W 2011 Phys. Rev. Lett. 107 203001Google Scholar

    [5]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [6]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801Google Scholar

    [7]

    Lewandowski W, Thomas C 1991 Proc. IEEE 79 991Google Scholar

    [8]

    Lewandowski W, Azoubib J, Klepczynski W J 1999 Proc. IEEE 87 163Google Scholar

    [9]

    Jiang Z 2009 Proceedings of 2009 Frequency Control Symposium & the 22nd European Frequency and Time forum Besancon, France, April 20−24, 2009 p1194

    [10]

    Chu F D, Tseng W H, Hsu W C, Ting P Y 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, China, May 19−22, 2014 p11

    [11]

    Kong Y, Yang X H, Qin W J, Cao F, Li Z G, Sun B Q, Chang H 2014 Proceedings of IEEE International Frequency Control Symposium Taipei, China, May 19−22, 2014 p1

    [12]

    Guagn W, Dong S, Wu W, Zhang J, Yuan H, Zhang S 2018 Metrologia 55 175Google Scholar

    [13]

    Heavner T P, Donley E A, Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S, Jefferts S R 2014 Metrologia 51 174Google Scholar

    [14]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90Google Scholar

    [15]

    Ebenhag S C 2008 Proceedings of the 22nd European Frequency and Time Forum Toulouse, France, April 22–25, 2008 p23

    [16]

    Piester D, Fujieda M, Rost M, Bauch A 2009 41st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting Santa Ana Pueblo, America, November 16−19, 2009 p16

    [17]

    Smotalacha V, Kuna A, Mache W 2010 Proceedings of the 42nd Annual Precise Time and Time Interval Meeting Reston, America, November 16−19, 2010 p427

    [18]

    Schnatz H 2012 Conference on Precision Electromagnetic Measurement Washington DC, America, July 1−6, 2012 p185

    [19]

    Akiyama T, Matsuzawa H, Haraguchi E, Ando T, Hirano Y 2012 Microwave Symposium Digest. IEEE/MTT-S International Montreal, Canada, June 17–22, 2012, p1

    [20]

    Smotlacha V, Kuna A, Mache W 2010 EFTF-2010 24th European Frequency and Time Forum Noordwijk, Netherlands, April 13–16, 2010 p1

    [21]

    Dierikx E F, Wallin A E, Fordell T, Myyry J, Koponen P, Merimaa M, Pinkert T, Koelemeij J C, Peek H Z, Smets R 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 945Google Scholar

    [22]

    Turza K, Krehlik P, Siwczynski L 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 4 797

    [23]

    Cheng H, Wu G L, Zuo F, Hu L, Chen J 2019 Opt. Lett. 21 5206

    [24]

    李得龙, 程清明, 张宝富, 卢麟, 雷平纪, 李晓亚 2014 激光与光电子进展 51 010602

    Li D L, Cheng Q M, Zhang B F, Lu L, Lei P J, Li X Y 2014 Laser and Photo-electronic Progress 51 010602

    [25]

    吴龟灵, 陈建平 2016 科技导报 34 99Google Scholar

    Wu G L, Chen J P 2016 Science and Technology Herald 34 99Google Scholar

    [26]

    Gao C, Wang B, Zhu X, ChenW L, Bai Y, Miao J, Zhu X, Li T C, Wang L J 2012 Opt. Lett. 37 4690Google Scholar

    [27]

    Chen W, Liu Q, Cheng N, Xu D, Yang F, Gui Y Z, Cai H W 2015 IEEE Photonics J. 7 7901609

    [28]

    刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 刘涛, 张首刚 2015 64 120602Google Scholar

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602Google Scholar

    [29]

    Deng X, Jiao D D, Liu J, Zang Q, Zhang X, Wang D, Gao J, Dong R F, Liu T, Zhang S G 2015 Chin Phys. B 24 054205Google Scholar

    [30]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601Google Scholar

    [31]

    陈法喜, 赵侃, 周旭, 刘涛, 张首刚 2017 20 200701Google Scholar

    Chen F X, Zhao K, Zhou X, Liu T, Zhang S G 2017 Acta Phys. Sin. 20 200701Google Scholar

    [32]

    Wang J, Yue C, Xi Y, Sun Y, Cheng N, Yang F, Jiang M, Sun J, Gui Y, Cai H 2020 Opt. Lett. 1 208

  • [1] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [2] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究.  , 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [3] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法.  , 2022, 71(4): 044204. doi: 10.7498/aps.71.20211253
    [4] 陈法喜, 赵侃, 李立波, 郭宝龙. 基于激光波长跟踪的高精度光纤时间传递.  , 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [5] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究.  , 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [6] 黄军超, 汪凌珂, 段怡菲, 黄亚峰, 刘亮, 李唐. 光纤1/f 热噪声的实验研究.  , 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [7] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究.  , 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [8] 丁伟, 汪滢莹, 高寿飞, 洪奕峰, 王璞. 高性能反谐振空芯光纤导光机理与实验制作研究进展.  , 2018, 67(12): 124201. doi: 10.7498/aps.67.20180724
    [9] 饶云江. 长距离分布式光纤传感技术研究进展.  , 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [10] 陈法喜, 赵侃, 周旭, 刘涛, 张首刚. 长距离多站点高精度光纤时间同步.  , 2017, 66(20): 200701. doi: 10.7498/aps.66.200701
    [11] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究.  , 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [12] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法.  , 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [13] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究.  , 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [14] 王静, 张晨芳, 康泽新, 孙将, 郑斯文, 林桢, 王春灿, 简水生. 多偏振控制高双折射光纤环形镜输出特性的理论和实验研究.  , 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [15] 乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟. 高精度准分布式光纤光栅地震检波解调系统的研究.  , 2011, 60(7): 074221. doi: 10.7498/aps.60.074221
    [16] 翟 惠, 徐世祥, 许智雄, 蔡 华, 杨 旋, 吴 昆, 曾和平. 与794nm飞秒激光精确同步的无直流背底的1064nm脉冲光的产生.  , 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [17] 余恬, 王福勋. 光斑的形状因子及其在光纤定解问题中的应用.  , 2002, 51(9): 1907-1912. doi: 10.7498/aps.51.1907
    [18] 余寿绵, 余恬. 索末菲球面波公式的协变形式及其在光纤理论中的应用.  , 2001, 50(6): 1097-1102. doi: 10.7498/aps.50.1097
    [19] 余寿绵, 余恬. 光纤中的电磁对偶变换与导波的模式分析.  , 2001, 50(11): 2179-2184. doi: 10.7498/aps.50.2179
    [20] 黄显高, 徐健学, 黄伟, 朱甫臣. 混沌系统的时间延迟同步误差分析.  , 2001, 50(12): 2296-2302. doi: 10.7498/aps.50.2296
计量
  • 文章访问数:  6903
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2020-10-31
  • 上网日期:  2021-03-19
  • 刊出日期:  2021-04-05

/

返回文章
返回
Baidu
map