Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine

Song Kun Gao Tai-Chang Liu Xi-Chuan Yin Min Xue Yang

Citation:

Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine

Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The precipitation is an important physical phenomenon. The real-time, accurate measurement of rainfall intensity has important significance in meteorological support, agriculture, weather forecasting, transportation industry and military mission. However, current methods, such as the rain gauge, the weather radar and meteorological satellite, are unable to meet the needs in all the areas above at present. The network of rain gauge is costly. Meanwhile, rain gauge has low spatial and temporal resolution. And the weather radar has a big deviation because of the ground clutter. Besides, the meteorological satellite is unable to measure the surface rainfall. Thus, a method of using the measurement of microwave rain-induced attenuation for rainfall estimation has been presented in meteorological field recently by meteorological experts and it has made some progress. The method based on microwave link has low cost because of using preexisting microwave device. There are also many preexisting microwave transmission networks, which can be used by rainfall field inversion in the future research. The method measures rainfall intensity more accurately because the propagation path of microwave is close to the surface. Many models for inversing rainfall intensity by rain-induced microwave attenuation have been put forward on account of the method advantages. The commonly used model for inversion of rain rate is given by International Telecommunication Union (ITU). However, the model presented by ITU ignores a number of meteorological factors such as temperature, humidity and air pressure, which to some degree reduces the accuracy of the rainfall inversion based on microwave link. Thus, based on the theory of support vector machine (SVM), an inversion method of the path rainfall intensity by using a microwave link is proposed. Starting from the theory of Mie scattering and the atmospheric gas absorption attenuation model, a model of rainfall intensity inversion of line-of-sight microwave links is proposed, which is based on support vector machine, the microwave rain attenuation characteristics and the Gamma drop-size distribution. One line-of-sight microwave link is designed and used to measure the microwave rain-induced attenuation and inverse rainfall. Compared with actual rainfall intensity measured by a disdrometer, inversion rainfall intensity shows a satisfactory result. The correlation coefficient of rain rate is inversed by microwave link based on SVM and that of disdrometer is higher than 0.6 mostly, and the maximum value is 0.9674; the minimum value of the root-mean-square error of the rain rate is 0.5780 mm/h; the minimum value of the error of accumulated rain amount is 0.0080 mm; the relative error of accumulated rain amount is less than 10% and its minimum value is 0.7425%. All these parameters above are superior to ITU's. Therefore, the inversion result demonstrates the validity, feasibility and accuracy of rainfall inversion model using a microwave link based on SVM. The model we present is of great significance for further improving the accuracy of inversion of rain rate based on microwave link and rainfall monitoring.
      Corresponding author: Gao Tai-Chang, 2009gaotc@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41475020, 41405024, 41327003).
    [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [7]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [8]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [9]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [10]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [11]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 63 199201]

    [12]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 62 154303]

    [13]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [14]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 64 174301]

    [15]

    International Telecommunication Union 2005 Rec. ITU-R p838-3

    [16]

    Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G, Wen X S 2008 Chin. Phys. B 17 1305

    [17]

    Liu X C, Gao T C, Han X D 2010 J. Meteorol. Sci. 30 42 (in Chinese) [刘西川, 高太长, 韩小冬 2010 气象科学 30 42]

    [18]

    David N, Alpert P, Messer H 2009 Atmos. Chem. Phys. 9 2413

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley & Sons Inc.) p279

    [23]

    Liu X C, Gao T C, Liu L 2013 Infrared Laser Eng. 42 167 (in Chinese) [刘西川, 高太长, 刘磊 2013 红外与激光工程 42 167]

    [24]

    Liu H H, Liu Y H 2012 Chin Phys. B 21 026102

  • [1]

    Gao T C 2012 Meteorol. Hydrol. Eq. 23 1 (in Chinese) [高太长 2012 气象水文装备 23 1]

    [2]

    L D R, Wang P C, Qiu J H, Tao S Y 2003 Chin. J. Atmos. Sci. 27 552 (in Chinese) [吕达仁, 王普才, 邱金恒, 陶诗言 2003 大气科学 27 552]

    [3]

    Liang H H, Xu B X, Liu L P, Ge R S 2005 Adv. Earth Sci. 20 541 (in Chinese) [梁海河, 徐宝祥, 刘黎平, 葛润生 2005 地球科学进展 20 541]

    [4]

    Qie X S, L D R, Chen H B, Wang P C, Duan S, Zhang W X 2008 Chin. J. Atmos. Sci. 32 867 (in Chinese) [郄秀书, 吕达仁, 陈洪滨, 王普才, 段树, 章文星 2008 大气科学 32 867]

    [5]

    Messer H, Zinevich A, Alpert P 2006 Science 312 713

    [6]

    Goldshtein O, Messer H, Zinevich A 2009 IEEE Trans. Signal Proces. 57 1616

    [7]

    Messer H, Zinevich A, Alpert P 2012 IEEE Trans. Instrum. Meas. 15 32

    [8]

    David N, Alpert P, Messer H 2013 Atmos. Res. 131 13

    [9]

    Overeem A, Leijnse H, Uijlenhoet R 2013 Proc. Natl. Acad. Sci. USA 110 2741

    [10]

    Liu X C, Liu L, Gao T C, Ren J P 2013 J. Infrared Millim. Waves 32 379 (in Chinese) [刘西川, 刘磊, 高太长, 任景鹏 2013 红外与毫米波学报 32 379]

    [11]

    Liu X C, Gao T C, Liu L, Zhai D L 2014 Acta Phys. Sin. 63 199201 (in Chinese) [刘西川, 高太长, 刘磊, 翟东力 2014 63 199201]

    [12]

    Jiang S T, Gao T C, Liu X C, Liu L, Liu Z T 2013 Acta Phys. Sin. 62 154303 (in Chinese) [姜世泰, 高太长, 刘西川, 刘磊, 刘志田 2013 62 154303]

    [13]

    Yin M, Jiang S T, Gao T C, Liu X C, Liang M Y, Ge S R, Cao C K 2015 Meteorol. Sci. Technol. 43 1 (in Chinese) [印敏, 姜世泰, 高太长, 刘西川, 梁妙元, 戈书睿, 曹承堃 2015 气象科技 43 1]

    [14]

    Gao T C, Song K, Liu X C, Yin M, Liu L, Jiang S T 2015 Acta Phys. Sin. 64 174301 (in Chinese) [高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰 2015 64 174301]

    [15]

    International Telecommunication Union 2005 Rec. ITU-R p838-3

    [16]

    Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G, Wen X S 2008 Chin. Phys. B 17 1305

    [17]

    Liu X C, Gao T C, Han X D 2010 J. Meteorol. Sci. 30 42 (in Chinese) [刘西川, 高太长, 韩小冬 2010 气象科学 30 42]

    [18]

    David N, Alpert P, Messer H 2009 Atmos. Chem. Phys. 9 2413

    [19]

    Chen B J, Li Z H, Liu J C, Gong F J 1998 Acta Meteorol. Sin. 56 123 (in Chinese) [陈宝君, 李子华, 刘吉成, 宫福久 1998 气象学报 56 123]

    [20]

    Yuan C, Fan L, Li Y B 2001 J. Nanjing I. Meteorol. 24 250 (in Chinese) [袁成, 樊玲, 李亚滨 2001 南京气象学院学报 24 250]

    [21]

    Zheng J H, Chen B J 2007 J. Meteorol. Sci. 27 17 (in Chinese) [郑娇恒, 陈宝君 2007 气象科学 27 17]

    [22]

    Freeman R 1991 Telecommunications Transmission Handbook (3rd Ed.) (Canda: John Wiley & Sons Inc.) p279

    [23]

    Liu X C, Gao T C, Liu L 2013 Infrared Laser Eng. 42 167 (in Chinese) [刘西川, 高太长, 刘磊 2013 红外与激光工程 42 167]

    [24]

    Liu H H, Liu Y H 2012 Chin Phys. B 21 026102

  • [1] Zhang Yi-Jun, Mu Xiao-Dong, Guo Le-Meng, Zhang Peng, Zhao Dao, Bai Wen-Hua. A support vector machine training scheme based on quantum circuits. Acta Physica Sinica, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [2] Liang Ke-Da, Liu Teng-Fei, Chang Zhe, Zhang Meng, Li Zhi-Xin, Huang Song-Song, Wang Jing. Inversion models of internal solitary wave propagation speed in ocean based on least squares method and support vector machine. Acta Physica Sinica, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [3] Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang. Method and experiment of path rainfall intensity inversion using a microwave link based on nonspherical rain-induced model. Acta Physica Sinica, 2017, 66(15): 154301. doi: 10.7498/aps.66.154301
    [4] Zhao Zhi-Gang, Zhang Chun-Jie, Gou Xiang-Feng, Sang Hu-Tang. Solar cell temperature prediction model of support vector machine optimized by particle swarm optimization algorithm. Acta Physica Sinica, 2015, 64(8): 088801. doi: 10.7498/aps.64.088801
    [5] Gao Tai-Chang, Song Kun, Liu Xi-Chuan, Yin Min, Liu Lei, Jiang Shi-Tai. Research on the method and experiment of path rainfall intensity inversion using a microwave link. Acta Physica Sinica, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [6] Meng Qing-Fang, Chen Shan-Shan, Chen Yue-Hui, Feng Zhi-Quan. Automatic detection of epileptic EEG based on recurrence quantification analysis and SVM. Acta Physica Sinica, 2014, 63(5): 050506. doi: 10.7498/aps.63.050506
    [7] Yu Yang, Hao Zhong-Qi, Li Chang-Mao, Guo Lian-Bo, Li Kuo-Hu, Zeng Qing-Dong, Li Xiang-You, Ren Zhao, Zeng Xiao-Yan. Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm. Acta Physica Sinica, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [8] Zhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, Jiang Hong-Zhang. Chaotic time series prediction using filtering window based least squares support vector regression. Acta Physica Sinica, 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [9] Jiang Shi-Tai, Gao Tai-Chang, Liu Xi-Chuan, Liu Lei, Liu Zhi-Tian. Investigation of the inversion of rainfall field based on microwave links. Acta Physica Sinica, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [10] Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [11] Wang Fang-Fang, Zhang Ye-Rong. An electromagnetic inverse scattering approach based on support vector machine. Acta Physica Sinica, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [12] Yan Xiao-Mei, Liu Ding. Control of fractional order chaotic system based on least square support vector machines. Acta Physica Sinica, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [13] Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationary time series prediction based on the SVM method. Acta Physica Sinica, 2008, 57(2): 714-719. doi: 10.7498/aps.57.714
    [14] Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [15] Zhang Jia-Shu, Dang Jian-Liang, Li Heng-Chao. Local support vector machine prediction of spatiotemporal chaotic time series. Acta Physica Sinica, 2007, 56(1): 67-77. doi: 10.7498/aps.56.67
    [16] Ye Mei-Ying. Control of chaotic system based on least squares support vector machine modeling. Acta Physica Sinica, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [17] Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [18] Liu Han, Liu Ding, Ren Hai-Peng. Chaos control based on least square support vector machines. Acta Physica Sinica, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [19] Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica, 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [20] Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines. Acta Physica Sinica, 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
Metrics
  • Abstract views:  5817
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2015
  • Accepted Date:  05 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map