-
Rydberg atom can respond to weak microwave electric field signal in real-time by using its electromagnetically induced transparency effect to realize down conversion of space microwave electric field signal, which can be used as a superheterodyne receiver. The Rydberg atom superheterodyne receiver is a new receiving system composed of Rydberg atoms, photodetectors, and electronic information processing modules. Presently, the physical response mechanism of Rydberg atomic superheterodyne receiving technology is studied in depth. However, no complete receiving link analysis model has been established, which is not conducive to optimizing its system performance. Based on the physical mechanism of the Rydberg atom responding to the microwave electric field, this paper introduces the concept of intrinsic expansion coefficient, establishes and experimentally verifies the receiving link model of the Rydberg atom superheterodyne receiver, and briefly discusses the influence of the intrinsic expansion coefficient on the system sensitivity and response characteristics, thereby providing the theoretical guidance for optimizing the performance of the Rydberg atom superheterodyne receiving system. In the end, the Rydberg atomic and the electronic receiving links' sensitivity performance is discussed and compared.
-
Keywords:
- Rydberg atoms /
- intrinsic expansion coefficient /
- receiving link /
- microwave electric field
[1] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
Google Scholar
[2] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2021 IEEE Antennas Propag. Mag. 63 63
Google Scholar
[3] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[4] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[5] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 Appl. Sci. -Basel 10 1346
Google Scholar
[6] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106
Google Scholar
[7] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
Google Scholar
[8] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975
Google Scholar
[9] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047
Google Scholar
[10] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[11] Mao R Q, Lin Y, Yang K, An Q, Fu Y Q 2018 IEEE Antennas Wirel. Propag. Lett. Early Access
[12] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
Google Scholar
[13] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427
Google Scholar
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
Google Scholar
[15] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625
Google Scholar
[16] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14
Liao K Y, Tu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Chin. -Phys. Mech. Astron. 51 14
[17] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432
Google Scholar
[18] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T. 2020 Nat. Phys. 16 911
Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics 9 250
Google Scholar
[20] Sedlacek J. A, Schwettmann A, Kübler H, Shaffer 2013 Phys. Rev. Lett. 111 063001
Google Scholar
[21] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813
Google Scholar
[22] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101
Google Scholar
[23] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501
Google Scholar
[24] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B:At. , Mol. Opt. Phys. 53 094003
Google Scholar
[25] Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103
Google Scholar
[26] Fancher C T, Scherer D R, John MCS, Schmittbergermarlow B 2021 IEEE Trans. Quantum Eng. 2 3501313
Google Scholar
[27] Wu B, Lin Y, Liu Y, An Q, Liao D W, Fu Y Q 2022 Electron. Lett. 58 914
Google Scholar
[28] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett 120 204001
Google Scholar
[29] Gabriel S B, Shane V, Eric B, Zoya P 2022 arXiv: 2209.00908 [hep-ph]
-
表 1 计算得到的κ, C1, 以及C4–2与C1之间的误差值
Table 1. Calculated κ, C1, and the error between C4–2 and C1.
κ
/(10–13 W·Hz–1)C1
/(10–4 A2·m2·W–1)C4–2 – C1
/(10–5 A2·m2·W–1)|(C4–2 – C1)/C1|
/%8.793 1.5090 –0.7823 5.18 8.924 1.5543 –1.2353 7.95 8.256 1.3303 1.0045 7.55 8.360 1.3640 0.6673 4.89 8.315 1.3494 0.8137 6.03 -
[1] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
Google Scholar
[2] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G, Voran S D 2021 IEEE Antennas Propag. Mag. 63 63
Google Scholar
[3] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[4] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[5] Zou H Y, Song Z F, Mu H H, Feng Z G, Qu J F, Wang Q L 2020 Appl. Sci. -Basel 10 1346
Google Scholar
[6] Deb A B, Kjaergaard N 2018 Appl. Phys. Lett. 112 211106
Google Scholar
[7] Holloway C L, Simons M T, Gordon J A, Novotny, D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
Google Scholar
[8] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975
Google Scholar
[9] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014047
Google Scholar
[10] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[11] Mao R Q, Lin Y, Yang K, An Q, Fu Y Q 2018 IEEE Antennas Wirel. Propag. Lett. Early Access
[12] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
Google Scholar
[13] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E, Raithel G 2019 Phys. Rev. A 100 063427
Google Scholar
[14] Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102
Google Scholar
[15] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625
Google Scholar
[16] 廖开宇, 涂海涛, 张新定, 颜辉, 朱诗亮 2021 中国科学: 物理学 力学 天文学 51 14
Liao K Y, Tu H T, Zhang X D, Yan H, Zhu S L 2021 Sci. Chin. -Phys. Mech. Astron. 51 14
[17] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432
Google Scholar
[18] Jing M, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T. 2020 Nat. Phys. 16 911
Google Scholar
[19] Cai M H, Xu Z S, You S H, Liu H P 2022 Photonics 9 250
Google Scholar
[20] Sedlacek J. A, Schwettmann A, Kübler H, Shaffer 2013 Phys. Rev. Lett. 111 063001
Google Scholar
[21] Bussey L W, Winterburn A, Menchetti M, Burton F, Whitley T 2021 J. Lightwave Technol. 39 7813
Google Scholar
[22] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101
Google Scholar
[23] Anderson D A, Paradis E G, Raithel G 2018 Appl. Phys. Lett. 113 073501
Google Scholar
[24] Sapiro R E, Raithel G A, Anderson D 2020 J. Phys. B:At. , Mol. Opt. Phys. 53 094003
Google Scholar
[25] Meyer D H, O'Brien C, Fahey D P, Cox K C, Kunz P D 2021 Phys. Rev. A 104 043103
Google Scholar
[26] Fancher C T, Scherer D R, John MCS, Schmittbergermarlow B 2021 IEEE Trans. Quantum Eng. 2 3501313
Google Scholar
[27] Wu B, Lin Y, Liu Y, An Q, Liao D W, Fu Y Q 2022 Electron. Lett. 58 914
Google Scholar
[28] Holloway C L, Prajapati N, Artusio-Glimpse A, Samuel B, Matthew T S, Yoshiaki K, Andrea A, Richard W Z 2022 Appl. Phys. Lett 120 204001
Google Scholar
[29] Gabriel S B, Shane V, Eric B, Zoya P 2022 arXiv: 2209.00908 [hep-ph]
Catalog
Metrics
- Abstract views: 4961
- PDF Downloads: 110
- Cited By: 0