Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isotope effect on quantum thermal transport in a polyethylene chain

Wu Yu Cai Shao-Hong Deng Ming-Sen Sun Guang-Yu Liu Wen-Jiang Cen Chao

Citation:

Isotope effect on quantum thermal transport in a polyethylene chain

Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • both the theoretical and the experimental aspects. Bulk polyethylene is regarded as a thermal insulator because its thermal conductivity is typically on the order of 0.35 W·m-1·K-1. However, recent studies demonstrate that a polyethylene chain has an extremely high thermal conductivity and the reported thermal conductivity of ultra-drawn polyethylene nanofibers is as high as 104 W·m-1·K-1, about 300 times higher than that of bulk polyethylene. In order to cast off this dilemma, several simulation methods are used to detect the unusually high thermal conductivity of a polyethylene chain. Molecular dynamics (MD) simulation results are highly sensitive to the choice of empirical potential or simulation method. Even using the same potential (AIREBO potential), the obtained thermal conductivity of a polyethylene chain is different. By combining the Green-Kubo method with a modal decomposition approach, equilibrium molecular dynamics (EMD) indicates that the thermal conductivity is able to exceed 100 W·m-1·K-1 while the polyethylene chain is longer than 40 nm at room temperature. Compared with the simulation result obtained by equilibrium molecular dynamics, the simulation result provided by using the non-equilibrium molecular dynamics (NEMD) method is only 57 W m·m-1·K-1 for a 160-nm-long polyethylene chain at room temperature. We use the first-principles method to calculate the force constant tensor, and the characteristics of quantum thermal transport in a polyethylene chain can be revealed. In our algorithm, several shortcomings of molecular dynamics, i.e., different potential functions or simulation methods may lead to obviously different results for the same quantum thermal transport system, are overcome. Based on the density functional theory (DFT), the central insertion scheme (CIS) combined with nonequilibrium Green's function (NEGF) is used to evaluate the isotope effect on quantum thermal transport in a polyethylene chain, which includes 432 atoms in scattering region and has a length of 18.533 nm. It is found that the upper limit of thermal conductivity of a 100-nm-long pure 12C polyethylene chain reaches a high value of 314.1 W·m-1·K-1 at room temperature. Moreover, for the case of a pure polyethylene chain of 12C, with other conditions unchanged, the reduction of average thermal conductance caused by 14C impurity is more remarkable than that by 13C. The most outstanding isotope effect on quantum thermal transport can be detected in the polyethylene chain. When the doping concentration of 14C in 12C is 50% at room temperature, the average thermal conductance will be reduced by 51%. It is of great significance for studying the mechanism of isotope effect on thermal transport in polyethylene.
      Corresponding author: Cai Shao-Hong, caish@mail.gufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11264005), Foundation of Science and Technology of Guizhou Province, China (Grant No.J[2012]2292), and the Natural Science Foundation of the Education Department of Guizhou Province, China (Grant No.[2014]307, 2008057, 2007036).
    [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [3]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [4]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 10 1038

    [5]

    Cao B Y, Dong R Y, Kong J, Chen H, Xu Y, Rong Q L, Cai A 2012 Acta Phys. Sin. 61 046501 (in Chinese) [曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸 2012 61 046501]

    [6]

    Yamanaka A, Takao T 2011 ISRN Mater. Sci. 10 5402

    [7]

    Liao Q W, Liu Z C, Liu W, Deng C C, Yang N 2015 Sci. Rep. 5 16543

    [8]

    Stocker H 2004 Physics Manual (Beijing: Peking University Press) p700 (in Chinese) [斯托克 2004 物理手册 (北京: 北京大学出版社) 第700页]

    [9]

    Onn D G, Witek A, Qiu Y Z, Anthony T R, Banholzer W F 1992 Phys. Rev. Lett. 68 2806

    [10]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [11]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [12]

    Xie Z X, Chen K Q, Duan W H 2011 Phys. Condens. Matter. 23 315302

    [13]

    Si C, Liu Z, Duan W H, Liu F 2013 Phys. Rev. Lett. 111 196802

    [14]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [15]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [16]

    Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [17]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 10 1038

    [18]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [19]

    Hu G J, Cao B Y, Li Y W 2014 Chin. Phys. Lett. 31 086501

    [20]

    Li X Q, Chen J, Yu C X, Zhang G 2013 Appl. Phys. Lett. 103 013111

    [21]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [22]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 64 186302]

    [23]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [24]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [27]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [28]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]

    [29]

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202 (in Chinese) [贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 61 127202]

    [30]

    Gu Y F, Wu X L, Wu H Z 2016 Acta Phys. Sin. 65 248104 (in Chinese) [顾云风, 吴晓莉, 吴宏章 2016 65 248104]

    [31]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [32]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [33]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision A.02, Gaussian, Inc., Wallingford CT

    [34]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [35]

    Nikoliç B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [36]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [37]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [38]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [39]

    Datta S, Cahay M, McLennan M 1987 Phys. Rev. B 36 5655

    [40]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [41]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [42]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [43]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [44]

    Calzolari A, Jayasekera T, Kim K W, Nardelli M B 2012 J. Phys. Condens. Matter 24 492204

    [45]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [46]

    Zavgorodnev Y V, Chvalun S N, Nikolaeva G Y, Sagitova E A, Pashinin P, Gordeyev S A, Prokhorov K A 2015 J. Phys. Conf. Ser. 594 012010

    [47]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Smith P, Chanzy H D, Rotzinger B P 1987 J. Mater. Sci. 22 523

    [49]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [50]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

  • [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [3]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [4]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 10 1038

    [5]

    Cao B Y, Dong R Y, Kong J, Chen H, Xu Y, Rong Q L, Cai A 2012 Acta Phys. Sin. 61 046501 (in Chinese) [曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸 2012 61 046501]

    [6]

    Yamanaka A, Takao T 2011 ISRN Mater. Sci. 10 5402

    [7]

    Liao Q W, Liu Z C, Liu W, Deng C C, Yang N 2015 Sci. Rep. 5 16543

    [8]

    Stocker H 2004 Physics Manual (Beijing: Peking University Press) p700 (in Chinese) [斯托克 2004 物理手册 (北京: 北京大学出版社) 第700页]

    [9]

    Onn D G, Witek A, Qiu Y Z, Anthony T R, Banholzer W F 1992 Phys. Rev. Lett. 68 2806

    [10]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [11]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [12]

    Xie Z X, Chen K Q, Duan W H 2011 Phys. Condens. Matter. 23 315302

    [13]

    Si C, Liu Z, Duan W H, Liu F 2013 Phys. Rev. Lett. 111 196802

    [14]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [15]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [16]

    Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [17]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 10 1038

    [18]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [19]

    Hu G J, Cao B Y, Li Y W 2014 Chin. Phys. Lett. 31 086501

    [20]

    Li X Q, Chen J, Yu C X, Zhang G 2013 Appl. Phys. Lett. 103 013111

    [21]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [22]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese) [陈晓彬, 段文晖 2015 64 186302]

    [23]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [24]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [25]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [26]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [27]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [28]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 62 244401]

    [29]

    Jia X F, Du L, Tang D H, Wang T L, Chen W H 2012 Acta Phys. Sin. 61 127202 (in Chinese) [贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪 2012 61 127202]

    [30]

    Gu Y F, Wu X L, Wu H Z 2016 Acta Phys. Sin. 65 248104 (in Chinese) [顾云风, 吴晓莉, 吴宏章 2016 65 248104]

    [31]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [32]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [33]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision A.02, Gaussian, Inc., Wallingford CT

    [34]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [35]

    Nikoliç B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [36]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [37]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [38]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [39]

    Datta S, Cahay M, McLennan M 1987 Phys. Rev. B 36 5655

    [40]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [41]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [42]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [43]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [44]

    Calzolari A, Jayasekera T, Kim K W, Nardelli M B 2012 J. Phys. Condens. Matter 24 492204

    [45]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503

    [46]

    Zavgorodnev Y V, Chvalun S N, Nikolaeva G Y, Sagitova E A, Pashinin P, Gordeyev S A, Prokhorov K A 2015 J. Phys. Conf. Ser. 594 012010

    [47]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911

    [48]

    Smith P, Chanzy H D, Rotzinger B P 1987 J. Mater. Sci. 22 523

    [49]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [50]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

  • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] Jiao Bao-Bao. New relation for nuclear charge radius based on isotope chain. Acta Physica Sinica, 2022, 71(15): 152101. doi: 10.7498/aps.71.20212343
    [3] Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [4] Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai. H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach. Acta Physica Sinica, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [5] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [6] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [7] Zou Da-Ren, Jin Shuo, Xu Ke, Zhao Zhen-Hua, Cheng Long, Yuan Yue. Simulation of the experiments on thermal desorption spectroscopy of hydrogen isotope in tungsten with the framework of rate theory. Acta Physica Sinica, 2015, 64(7): 072801. doi: 10.7498/aps.64.072801
    [8] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [9] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [10] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [11] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [12] Wang Gang, Fang Xiang-Zheng, Guo Jian-You. Analysis of shape evolution for Pt isotopes with relativistic mean field theory. Acta Physica Sinica, 2012, 61(10): 102101. doi: 10.7498/aps.61.102101
    [13] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [15] Chen Xing-Peng, Wang Nan. Ground state properties of Rn isotopes within the relativistic mean field theory. Acta Physica Sinica, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [16] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [17] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [18] Sheng Zong-Qiang, Guo Jian-You. Systematic investigation of shape-coexistence in Se,Kr,Sr and Zr isotopes with relativistic mean field theory. Acta Physica Sinica, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [19] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [20] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
Metrics
  • Abstract views:  6256
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2017
  • Accepted Date:  27 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map