Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2

Wang Ming-Xin Wang Mei-Shan Yang Chuan-Lu Liu Jia Ma Xiao-Guang Wang Li-Zhi

Citation:

Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2

Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The stereodynamics of the H+NH reaction and its isotopic variants are investigated by the quasi-classical trajectory method at the collision energies of 8 kcal/mol and 16 kcal/mol based on the ground state potential energy surface of NH2 reported by Zhai and Han [Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314]. Vector correlations of k- j' and k- k'- j', such as angular distributions of P(θr), P(φr), P(θr, φr) and the distributions of the polarization-dependent differential cross-sections are discussed in detail. The results indicate that for the two collision energies, the isotopic effect on sterodynamic property of H+NH reaction is apparent which could be attributed to the difference in mass factor in isotopy-susbstituting reaction.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474142, 11074103).
    [1]

    Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A, Chen C X 1990 J. Chem. Phys. 93 8703

    [2]

    Davidson D F, Hanson R K 1990 Int. J. Chem. Kinet. 22 843

    [3]

    Pascual R Z, Schatz G C, Lendvay G, Troya D 2002 J. Phys. Chem. A 106 4125

    [4]

    Adam L, Hack W, Zhu H, Qu Z W, Schinke R 2005 J. Chem. Phys. 122 114301

    [5]

    Poveda L A, Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867

    [6]

    Han B R, Yang H, Zheng Y J, Varandas A J C 2010 Chem. Phys. Lett. 493 225

    [7]

    Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314

    [8]

    He D, Wang M S, Yang C L, Jiang Z J 2013 Chin. Phys. B 22 068201

    [9]

    Wei Q 2014 Chin. Phys. B 23 023401

    [10]

    Li Z, Xie C J, Jiang B, Xie D Q, Liu L, Sun Z G, Zhang D H, Guo H 2011 J. Chem. Phys. 134 134303

    [11]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [12]

    Han K L, Zheng X G, Sun B F, He G Z, Zhang R Q 1991 Chem. Phys. Lett. 181 474

    [13]

    Han K L, Zhang L, Xu D L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 2956

    [14]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [15]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [16]

    Brouard M, Burak I, Hughes D W, Kalogerakis K S, Simons J P, Stavros V 2000 J. Chem. Phys. 113 3173

    [17]

    Li X H, Wang M S, Pino I, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [18]

    Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P, Duan Y B 2011 Chin. Phys. Lett. 28 093403

    [19]

    Jiang Z J, Wang M S, Yang C L, He D 2013 Chem. Phys. 415 8

    [20]

    Wang M L, Han K L, He G Z, Lou N Q 1998 Chem. Phys. Lett. 284 200

    [21]

    Gustafsson M, Skodje R T 2007 Chem. Phys. Lett. 434 20

    [22]

    Yang T G, Yuan J C, Cheng D H, Chen M D 2013 Commun. Comput. Chem. 1 15

    [23]

    Zhao J, Xu Y, Yue D G, Meng Q T 2009 Chem. Phys. Lett. 471 160

    [24]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [25]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [26]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [27]

    Aoiz F J, Herrero V J, Sáez R V 1992 J. Chem. Phys. 97 7423

    [28]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [29]

    Zhao J, Xu Y, Meng Q T 2010 Chin. Phys. B 19 063403

    [30]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [31]

    Yue X F, Cheng J, Li H, Zhang Y Q, Wu E L 2010 Chin. Phys. B 19 043401

    [32]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [33]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012 61 223401]

    [34]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [35]

    Xu Y, Zhao J, Wang J, Liu F, Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese) [许燕, 赵娟, 王军, 刘芳, 孟庆田 2010 59 3885]

    [36]

    Li W L, Wang M S, Yang C L, Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [37]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

  • [1]

    Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A, Chen C X 1990 J. Chem. Phys. 93 8703

    [2]

    Davidson D F, Hanson R K 1990 Int. J. Chem. Kinet. 22 843

    [3]

    Pascual R Z, Schatz G C, Lendvay G, Troya D 2002 J. Phys. Chem. A 106 4125

    [4]

    Adam L, Hack W, Zhu H, Qu Z W, Schinke R 2005 J. Chem. Phys. 122 114301

    [5]

    Poveda L A, Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867

    [6]

    Han B R, Yang H, Zheng Y J, Varandas A J C 2010 Chem. Phys. Lett. 493 225

    [7]

    Zhai H S, Han K L 2011 J. Chem. Phys. 135 104314

    [8]

    He D, Wang M S, Yang C L, Jiang Z J 2013 Chin. Phys. B 22 068201

    [9]

    Wei Q 2014 Chin. Phys. B 23 023401

    [10]

    Li Z, Xie C J, Jiang B, Xie D Q, Liu L, Sun Z G, Zhang D H, Guo H 2011 J. Chem. Phys. 134 134303

    [11]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [12]

    Han K L, Zheng X G, Sun B F, He G Z, Zhang R Q 1991 Chem. Phys. Lett. 181 474

    [13]

    Han K L, Zhang L, Xu D L, He G Z, Lou N Q 2001 J. Phys. Chem. A 105 2956

    [14]

    Duan L H, Zhang W Q, Xu X S, Cong S L, Chen M D 2009 Mol. Phys. 107 2579

    [15]

    Xiao J, Yang C L, Wang M S 2012 Chin. Phys. B 21 043101

    [16]

    Brouard M, Burak I, Hughes D W, Kalogerakis K S, Simons J P, Stavros V 2000 J. Chem. Phys. 113 3173

    [17]

    Li X H, Wang M S, Pino I, Yang C L, Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438

    [18]

    Zhang J, Chu T S, Dong S L, Yuan S P, Fu A P, Duan Y B 2011 Chin. Phys. Lett. 28 093403

    [19]

    Jiang Z J, Wang M S, Yang C L, He D 2013 Chem. Phys. 415 8

    [20]

    Wang M L, Han K L, He G Z, Lou N Q 1998 Chem. Phys. Lett. 284 200

    [21]

    Gustafsson M, Skodje R T 2007 Chem. Phys. Lett. 434 20

    [22]

    Yang T G, Yuan J C, Cheng D H, Chen M D 2013 Commun. Comput. Chem. 1 15

    [23]

    Zhao J, Xu Y, Yue D G, Meng Q T 2009 Chem. Phys. Lett. 471 160

    [24]

    Chen M D, Han K L, Lou N Q 2003 J. Chem. Phys. 118 4463

    [25]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [26]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [27]

    Aoiz F J, Herrero V J, Sáez R V 1992 J. Chem. Phys. 97 7423

    [28]

    Zhang W Q, Li Y Z, Xu X S, Chen M D 2010 Chem. Phys. 367 115

    [29]

    Zhao J, Xu Y, Meng Q T 2010 Chin. Phys. B 19 063403

    [30]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Comput. Chem. 8 403

    [31]

    Yue X F, Cheng J, Li H, Zhang Y Q, Wu E L 2010 Chin. Phys. B 19 043401

    [32]

    Li R J, Han K L, Li F E, Lu R C, He G Z, Lou N Q 1994 Chem. Phys. Lett. 220 281

    [33]

    Xia W Z, Yu Y J, Yang C L 2012 Acta Phys. Sin. 61 223401 (in Chinese) [夏文泽, 于永江, 杨传路 2012 61 223401]

    [34]

    Wang M L, Han K L, He G Z 1998 J. Phys. Chem. A 102 10204

    [35]

    Xu Y, Zhao J, Wang J, Liu F, Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese) [许燕, 赵娟, 王军, 刘芳, 孟庆田 2010 59 3885]

    [36]

    Li W L, Wang M S, Yang C L, Liu W W, Sun C, Ren T Q 2007 Chem. Phys. 337 93

    [37]

    Chen M D, Han K L, Lou N Q 2002 Chem. Phys. Lett. 357 483

  • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [3] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [4] Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang. Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction. Acta Physica Sinica, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [5] Tang Xiao-Ping, He Xiao-Hu, Zhou Can-Hua, Yang Yang. Effect of reagent vibrational excitation on reaction of H+CH+C++H2. Acta Physica Sinica, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [6] Wei Qiang. Exploring the stereodynamics of C(3P)+NO(X2)CO(X1+)+N(4S) reaction on 4A potential energy surface. Acta Physica Sinica, 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [7] Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui. Dynamics for the reaction O+DCl→OD+Cl. Acta Physica Sinica, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [8] Hu Mei, Liu Xin-Guo, Tan Rui-Shan. Influence of collision energy and reagent vibrational excitation on the stereodynamics of reaction Ar+H2+→ArH++H. Acta Physica Sinica, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [9] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [10] Ma Jian-Jun. Collision energy effect on stereodynamics for Sr+CH3I→SrI+CH3. Acta Physica Sinica, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [11] Ma Jian-Jun. Effect of rotational excitation of NO on the stereodynamics for the reaction N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P). Acta Physica Sinica, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [12] Tan Rui-Shan, Liu Xin-Guo, Hu Mei. Stereodynamics study of Li+HF (v = 0–3,j = 0)→LiF+H reaction. Acta Physica Sinica, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [13] Li Hong, Zheng Bin, Meng Qing-Tian. Quasi-classical trajectory approach to the influence of the rotational excitation on the stereodynamics of the reaction O+HBrOH+Br. Acta Physica Sinica, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [14] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [15] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] Xu Xue-Song, Zhang Wen-Qin, Jin Kun, Yin Shu-Hui. Effect of vibrational quantum number on stereodynamics of reaction O+HCl→OH+Cl. Acta Physica Sinica, 2010, 59(11): 7808-7814. doi: 10.7498/aps.59.7808
    [17] Liu Xin-Guo, Sun Hai-Zhu, Liu Hui-Rong, Zhang Qing-Gang. Stereodynamics study of O+ +H2 reaction and its isotopic variants. Acta Physica Sinica, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [18] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [19] Kong Hao, Liu Xin-Guo, Xu Wen-Wu, Liang Jing-Juan, Zhang Qing-Gang. Stereodynamics study of the reactions of He+H+2 and its isotopic variants. Acta Physica Sinica, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [20] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
Metrics
  • Abstract views:  6288
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2014
  • Accepted Date:  20 September 2014
  • Published Online:  05 February 2015

/

返回文章
返回
Baidu
map