搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应

李文涛 于文涛 姚明海

引用本文:
Citation:

采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应

李文涛, 于文涛, 姚明海

H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach

Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai
PDF
导出引用
  • 采用量子波包方法和二阶分裂算符方法对H/D+Li2LiH/LiD+Li反应在0.01到0.4 eV的碰撞能范围内进行了动力学计算.在态分辨的理论水平上计算了反应概率、积分截面、微分截面等动力学性质并与之前的理论结果进行了比较.结果表明:由于本文的计算中包含了总角动量J在体固定坐标轴上的所有投影所得,结果更加精确;此外,当H原子被重的同位素原子D取代,反应概率、积分截面增大,然而这并没有对反应机理产生大的影响.前后对称的微分截面表明插入反应机理在反应过程中占据主导地位.
    The isotopic effect is a significant way to further understand the reaction mechanism without greatly changing the system. However, the isotopic effect of the H + Li2 reaction has received little attention in previous theoretical studies. Furthermore, as a deep potential well exists on the reaction path, obtaining convergent result is very time-consuming. So some approximate methods were used in previous theoretical calculations. However the Coriolis coupling effect plays an important role in the reaction, and thus whether these approximate methods are reasonable needs further testing. Based on the potential energy surface (PES) reported by Song et al., the dynamical calculations of H/D + Li2 LiH/LiD + Li reactions are carried out by time dependent quantum wave packet method with second order split operator in a collision energy range from 0 to 0.4 eV. In order to obtain the convergent results, lots of convergence tests are carried out and because the Coriolis coupling effect plays an important role in the reaction, all the number of projections of total angular momentum J are included in the present calculation. The dynamical properties such as reaction probability, integral cross section, differential cross section are calculated and compared with previous theoretical values. Large discrepancies are found between present results and the values obtained from Gao et al. especially at high collision energies. Owing to the fact that the same PES is applied to the calculation and Gao's results of total angular momentum J=0 accord well with the present values, we suppose that the parameters used in the calculation have little influence on the final results and the main discrepancies are attributed to the number of projections of total angular momentum which are cut off in Gao et al.'s calculation. In order to verify our speculation, the numbers of projections of total angular momentum which are 1, 5, 10, 15, 20, and 25, are considered in the calculation, respectively. The results indicate that the main discrepancy between present values and the results obtained from Gao et al. can be attributed to the number of projections of total angular momentum used in Gao et al.'s calculation that is not convergent, and that the present values are more accurate than previous theoretical studies for all the numbers of projections of total angular momentum which are included in the calculation. Furthermore, when the H atom is substituted by the heavy isotope D atom, the reaction probability and integral cross section become large. However, it does not generate large effect on the reaction mechanism. The forward and backward symmetry differential cross section signals indicate that the complex forming reaction mechanism dominates the reaction.
      通信作者: 李文涛, wtlee1982@163.com
    • 基金项目: 辽宁省博士科学基金(批准号:201601349)和辽宁省教育厅青年项目(批准号:LQ2017001)资助的课题.
      Corresponding author: Li Wen-Tao, wtlee1982@163.com
    • Funds: Project supported by the Doctoral Science Fund of Liaoning Province, China (Grant No. 201601349) and the Youth Fund of Education Department of Liaoning Province, China (Grant No. LQ2017001).
    [1]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [2]

    Prez-Ros J, Greene C H 2015 J. Chem. Phys. 143 041105

    [3]

    Wang B B, Han Y C, Cong S L 2016 J. Chem. Phys. 145 204304

    [4]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926

    [5]

    Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356

    [6]

    Kim S K, Herschbach D R 1987 Faraday Discuss. Chem. Soc. 84 159

    [7]

    Vezin B, Dugourd P, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209

    [8]

    Siegbahn P, Schaefer H F 1975 J. Chem. Phys. 62 3488.

    [9]

    Yan G S, Xian H, Xie D Q 1997 Sci. China Ser. B:Chem. 40 342

    [10]

    Maniero A M, Acioli P H, Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123

    [11]

    Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3

    [12]

    Yuan M L, Li W T, Chen M D 2017 Int. J. Quant. Chem. e25380

    [13]

    Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854

    [14]

    Vila H V R, Leal L A, Martins J B L, Skouteris D, eSilva G M, Gargano R 2012 J. Chem. Phys. 136 34319

    [15]

    Cunha W F, Leal L A, Cunha T F, Silva G M, Martins J B L, Gargano R 2014 J. Mol. Model 20 2315

    [16]

    Gao S B, Zhang J, Song Y Z, Meng Q T 2015 Eur. Phys. J. D 69 111

    [17]

    Gao S B, Zhang L, Song Y Z, Meng Q T 2016 Chem. Phys. Lett. 651 233

    [18]

    Fu B N, Zhang D H 2012 J. Chem. Phys. 136 194301

    [19]

    Shen P R, Han Y C, Li J L, Chen C J, Cong S L 2015 Laser Phys. Lett. 12 045302

    [20]

    Pang Y H, Wang B B, Han Y C, Cong S L, Niu Y Y 2016 Chin. J. Chem. Phys. 29 297

    [21]

    Gao W, Wang B B, Hu X J, Chai S, Han Y C, Greenwood J B 2017 Phys. Rev. A 96 013426

    [22]

    Yuan J C, Cheng D H, Chen M D 2014 RSC Adv. 4 36189

    [23]

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)[段志欣, 邱明辉, 姚翠霞 2014 63 063402]

    [24]

    Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101 (in Chinese)[张静,魏巍,高守宝,孟庆田 2015 64 063101]

    [25]

    Yuan K J, Cheng Y, Liu X H, Harich S, Yang X M, Zhang D H 2006 Phys. Rev. Lett. 96 103202

    [26]

    Hankel M, Smith S C, Allan R J, Gray S K, Balint-Kurti G G 2006 J. Chem. Phys. 125 164303

    [27]

    Fu B, Zhang D H 2007 J. Phys. Chem. A 111 9516

    [28]

    Zhang D H 2006 J. Chem. Phys. 125 133102

    [29]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [30]

    Light J C, Carrington T 2000 Adv. Chem. Phys. 114 263

  • [1]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [2]

    Prez-Ros J, Greene C H 2015 J. Chem. Phys. 143 041105

    [3]

    Wang B B, Han Y C, Cong S L 2016 J. Chem. Phys. 145 204304

    [4]

    Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem. Chem. Phys. 19 22926

    [5]

    Wu C H, Ihle H R 1977 J. Chem. Phys. 66 4356

    [6]

    Kim S K, Herschbach D R 1987 Faraday Discuss. Chem. Soc. 84 159

    [7]

    Vezin B, Dugourd P, Rayane D, Labastie P, Broyer M 1993 Chem. Phys. Lett. 202 209

    [8]

    Siegbahn P, Schaefer H F 1975 J. Chem. Phys. 62 3488.

    [9]

    Yan G S, Xian H, Xie D Q 1997 Sci. China Ser. B:Chem. 40 342

    [10]

    Maniero A M, Acioli P H, Silva G M, Gargano R 2010 Chem. Phys. Lett. 490 123

    [11]

    Song Y Z, Li Y Q, Gao S B, Meng Q T 2014 Eur. Phys. J. D 68 3

    [12]

    Yuan M L, Li W T, Chen M D 2017 Int. J. Quant. Chem. e25380

    [13]

    Kim S K, Jeoung S C, Tan A L C, Herschbach D R 1991 J. Chem. Phys. 95 3854

    [14]

    Vila H V R, Leal L A, Martins J B L, Skouteris D, eSilva G M, Gargano R 2012 J. Chem. Phys. 136 34319

    [15]

    Cunha W F, Leal L A, Cunha T F, Silva G M, Martins J B L, Gargano R 2014 J. Mol. Model 20 2315

    [16]

    Gao S B, Zhang J, Song Y Z, Meng Q T 2015 Eur. Phys. J. D 69 111

    [17]

    Gao S B, Zhang L, Song Y Z, Meng Q T 2016 Chem. Phys. Lett. 651 233

    [18]

    Fu B N, Zhang D H 2012 J. Chem. Phys. 136 194301

    [19]

    Shen P R, Han Y C, Li J L, Chen C J, Cong S L 2015 Laser Phys. Lett. 12 045302

    [20]

    Pang Y H, Wang B B, Han Y C, Cong S L, Niu Y Y 2016 Chin. J. Chem. Phys. 29 297

    [21]

    Gao W, Wang B B, Hu X J, Chai S, Han Y C, Greenwood J B 2017 Phys. Rev. A 96 013426

    [22]

    Yuan J C, Cheng D H, Chen M D 2014 RSC Adv. 4 36189

    [23]

    Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63 063402 (in Chinese)[段志欣, 邱明辉, 姚翠霞 2014 63 063402]

    [24]

    Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin. 64 063101 (in Chinese)[张静,魏巍,高守宝,孟庆田 2015 64 063101]

    [25]

    Yuan K J, Cheng Y, Liu X H, Harich S, Yang X M, Zhang D H 2006 Phys. Rev. Lett. 96 103202

    [26]

    Hankel M, Smith S C, Allan R J, Gray S K, Balint-Kurti G G 2006 J. Chem. Phys. 125 164303

    [27]

    Fu B, Zhang D H 2007 J. Phys. Chem. A 111 9516

    [28]

    Zhang D H 2006 J. Chem. Phys. 125 133102

    [29]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [30]

    Light J C, Carrington T 2000 Adv. Chem. Phys. 114 263

  • [1] 赵文丽, 宋玉志, 马超, 高峰, 孟庆田. 基于一个新SiH2(11A′)势能面的H+SiH反应动力学研究.  , 2024, 73(20): 203401. doi: 10.7498/aps.73.20240859
    [2] 周勇. F+CHD3→HF+CD3反应C—H伸缩振动激发的量子动力学研究.  , 2024, 73(9): 098201. doi: 10.7498/aps.73.20231832
    [3] 邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇. 铷簇同位素效应的量化研究.  , 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [4] 李文涛, 袁美玲, 王杰敏. C++H2反应的动力学研究: 基于一个新构建的势能面.  , 2022, 71(9): 093402. doi: 10.7498/aps.71.20212241
    [5] 赵文丽, 孙丰伟, 张红, 王永刚, 高峰, 孟庆田. $ {\text{D}} + {\text{Si}}{{\text{D}}^ + } \to {{\text{D}}_2} + {\text{S}}{{\text{i}}^ + } $反应量子波包动力学研究.  , 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [6] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应.  , 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [7] 袁方园, 朱子亮. D + DBr反应的态-态动力学研究.  , 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [8] 袁美玲, 李文涛. O++H2 → OH++H反应的动力学研究.  , 2019, 68(8): 083401. doi: 10.7498/aps.68.20182141
    [9] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超. 聚乙烯单链量子热输运的同位素效应.  , 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [10] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [11] 张静, 魏巍, 高守宝, 孟庆田. H+Li2: 一个典型的释能反应体系及其含时动力学研究.  , 2015, 64(6): 063101. doi: 10.7498/aps.64.063101
    [12] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [13] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响.  , 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [14] 李勇军, 冯灏, 孙卫国, 曾阳阳, 王小炼, 李会东, 樊群超. 基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究.  , 2011, 60(4): 043401. doi: 10.7498/aps.60.043401
    [15] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究.  , 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [16] 王悦, 董德智, 李伟艳, 凤尔银, 崔执凤. He-Na2体系低温下的冷碰撞研究.  , 2009, 58(10): 6913-6919. doi: 10.7498/aps.58.6913
    [17] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面.  , 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [18] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数.  , 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [19] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响.  , 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [20] 白丽华, 张庆刚, 刘新国. D+CD4→CD3+D2反应的四维量子散射计算.  , 2003, 52(11): 2774-2780. doi: 10.7498/aps.52.2774
计量
  • 文章访问数:  5356
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-11
  • 修回日期:  2018-03-22
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map