Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle study on quantum thermal transport in a polythiophene chain

Wu Yu Cai Shao-Hong Deng Ming-Sen Sun Guang-Yu Liu Wen-Jiang

Citation:

First-principle study on quantum thermal transport in a polythiophene chain

Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bulk polythiophene material is usually regarded as thermal insulator because it has low thermal conductivity (less than 1 Wm-1K-1). However, the report demonstrates that along the amorphous polythiophene nanofiber axis, the pure polythiophene nanofibers have high thermal conductivity (more than 4.4 Wm-1K-1), which is obviously higher than that of the bulk polythiophene material. In order to throw light on this situation, molecular dynamics (MD) method is used to detect the high thermal conductivity of a polythiophene chain. However, the MD method is highly sensitive to the choice of empirical potential function or simulation method. Even if the same potential function (ReaxFF potential function) is adopted, the thermal conductivity of a polythiophene chain could also have obviously different results. To overcome the instability of MD method, we use the first-principles to calculate the force constant tensor. In such a case the properties of quantum mechanics in a polythiophene chain can be reflected. In our algorithm, several disadvantages of MD that different potential functions or different simulation methods probably lead to very different thermal conductivities for the same transport system are avoided. Based on the density functional theory (DFT), the central insertion scheme (CIS) method and nonequilibrium Green's function (NEGF) approach are used to evaluate the isotope effect on thermal transport in a polythiophene chain, which includes 448 atoms in a scattering region and has a length of 25.107 nm. It is found that the thermal conductivity of a 32-nm-long pure polythiophene chain reaches 30.2 Wm-1K-1, which is close to the thermal conductivity of lead at room temperature. The reduction of average thermal conductance caused by C atom impurity is more remarkable than by S for a pure polythiophene chain when the mixing ratios of 13C to 12C and 36S to 32S are equal. The most outstanding isotope effect on quantum thermal transport appears when the mixing ratio of 13C to 12C is 1:1. It will cause the average thermal conductance to decrease by at least 30% in the polythiophene chain at room temperature. Moreover, we find that the thermal conductance of a pure polythiophene chain is inversely proportional to the atomic weight of carbon, and increases nonlinearly with the increasing atomic weight of sulfur. It is of significance to optimize the thermal conductance properties of polythiophene function material.
      Corresponding author: Cai Shao-Hong, caish@mail.gufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264005), the Foundation of Science and Technology Department of Guizhou Province, China (Grant No.[2012]2292), and the Natural Science Foundation of the Education Department of Guizhou Province, China (Grant No.[2014]307).
    [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Bulumulla C, Du J, Washington K E, Kularatne R N, Nguyen H Q, Michael C B, Stefan M C 2017 J. Mater. Chem. A 5 2473

    [3]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [4]

    Cowen L M, Atoyo J, Carnie M J, Baran D, Schroeder B C 2017 ECS J. Solid State Sci. Technol. 6 3080

    [5]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)[陈晓彬,段文晖 2015 64 186302]

    [6]

    Bouzzine S M, Salgado-Morn G, Hamidi M, Bouachrine M, Pacheco A G, Glossman-Mitnik D 2015 J. Chem. 2015 296386

    [7]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [8]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [9]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [10]

    Ouyang T, Chen Y P, Xie Y, Wei X L, Yang K K, Yang P, Zhong J X 2010 Phys. Rev. B 82 245403

    [11]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [12]

    Sevinli H, Sevik C, aın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [13]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 11 203

    [14]

    Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D Y, Majumdar A, Zettl A 2006 Phys. Rev. Lett. 97 085901

    [15]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 5 251

    [16]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [17]

    Lv W, Winters M, Deangelis F, Weinberg G, Henry A 2017 J. Phys. Chem. A 121 5586

    [18]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [19]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [22]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [23]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [24]

    Satoh M, Yamasaki H, Aoki S, Yoshino K 1988 Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 159 289

    [25]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [26]

    Nikolić B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [27]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [28]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [29]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [30]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [31]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [32]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [33]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [34]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [35]

    Fu M X, Shi G Q, Chen F G, Hong X Y 2002 Phys. Chem. Chem. Phys. 4 2685

    [36]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [37]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

    [38]

    Hu M, Giapis K P, Goicochea J V, Zhang X, Poulikakos D 2011 Nano Lett. 11 618

    [39]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [40]

    Zhou W X, Chen K Q 2014 Nature. Sci. Rep. 4 7150

    [41]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Bulumulla C, Du J, Washington K E, Kularatne R N, Nguyen H Q, Michael C B, Stefan M C 2017 J. Mater. Chem. A 5 2473

    [3]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [4]

    Cowen L M, Atoyo J, Carnie M J, Baran D, Schroeder B C 2017 ECS J. Solid State Sci. Technol. 6 3080

    [5]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)[陈晓彬,段文晖 2015 64 186302]

    [6]

    Bouzzine S M, Salgado-Morn G, Hamidi M, Bouachrine M, Pacheco A G, Glossman-Mitnik D 2015 J. Chem. 2015 296386

    [7]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [8]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [9]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [10]

    Ouyang T, Chen Y P, Xie Y, Wei X L, Yang K K, Yang P, Zhong J X 2010 Phys. Rev. B 82 245403

    [11]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [12]

    Sevinli H, Sevik C, aın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [13]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 11 203

    [14]

    Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D Y, Majumdar A, Zettl A 2006 Phys. Rev. Lett. 97 085901

    [15]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 5 251

    [16]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [17]

    Lv W, Winters M, Deangelis F, Weinberg G, Henry A 2017 J. Phys. Chem. A 121 5586

    [18]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [19]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [22]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [23]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [24]

    Satoh M, Yamasaki H, Aoki S, Yoshino K 1988 Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 159 289

    [25]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [26]

    Nikolić B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [27]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [28]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [29]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [30]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [31]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [32]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [33]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [34]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [35]

    Fu M X, Shi G Q, Chen F G, Hong X Y 2002 Phys. Chem. Chem. Phys. 4 2685

    [36]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [37]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

    [38]

    Hu M, Giapis K P, Goicochea J V, Zhang X, Poulikakos D 2011 Nano Lett. 11 618

    [39]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [40]

    Zhou W X, Chen K Q 2014 Nature. Sci. Rep. 4 7150

    [41]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai. H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach. Acta Physica Sinica, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [6] Shen Yong, Dong Jia-Qi, Xu Hong-Bing. Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak. Acta Physica Sinica, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [7] Zhou Xin, Gao Ren-Bin, Tan Shi-Hua, Peng Xiao-Fang, Jiang Xiang-Tao, Bao Ben-Gang. Influence of multi-cavity dislocation distribution on thermal conductance in graphene nanoribbons. Acta Physica Sinica, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [8] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [9] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [10] Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang. Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions. Acta Physica Sinica, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [11] Liu Fu-Ti, Zhang Shu-Hua, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong. Theoretical calculation of electron transport properties of atomic chains of (GaAs)n (n=1-4). Acta Physica Sinica, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [12] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [13] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [14] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [15] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [16] An Xing-Tao, Mu Hui-Ying, Xian Li-Fen, Liu Jian-Jun. Spin-polarized transport through double quantum-dot-array. Acta Physica Sinica, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [17] Qiu Ming, Zhang Zhen-Hua, Deng Xiao-Qing. Analysis on transport sensitivity for a carbon atomic wire attached with side groups. Acta Physica Sinica, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [18] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [19] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [20] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
Metrics
  • Abstract views:  6600
  • PDF Downloads:  197
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2017
  • Accepted Date:  13 August 2017
  • Published Online:  20 January 2019

/

返回文章
返回
Baidu
map