Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak

Shen Yong Dong Jia-Qi Xu Hong-Bing

Citation:

Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak

Shen Yong, Dong Jia-Qi, Xu Hong-Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Tokamak experiments show that the plasma empirical energy confinement scaling law varies with plasma ion mass (Ai) in a certain range under conditions of different plasma parameters or different devices. In order to understand such a modification of the empirical energy confinement scaling law, the isotope mass dependence of ion temperature gradient (ITG, including impurity modes) turbulence driven transport in the presence of tungsten impurity ions in tokamak plasma is studied by employing the gyrokinetic theory. The effect of heavy (tungsten) impurity ions on ITG and impurity mode is revealed to modify significantly the isotope mass dependence and effective charge effect. As the charge number of impurity ions (Z) or impurity charge concentration (fz) changes, the theoretical scaling law of ITG turbulence transport varies substantially in a relatively large range. The maximum growth rate of ITG mode scales as Mi-0.48 -0.12, whilst that of impurity mode scales as Mi-0.46 -0.3. Here, Mi is the mass number of primary ion in the plasma. In both cases the fitting index with Mi deviates further away from -0.5 when impurity charge concentration fz increases. The isotope mass dependence of ITG turbulence gradually weakens when the effective charge number Zeff increases. The isotope mass dependence of impurity mode turbulence also weakens with Zeff increasing for the same impurity ion charge number (Z). In contrast, the isotope mass dependence gradually strengthens with effective charge number Zeff increasing for the same impurity charge concentration (fz). On average, the maximum growth rates of impurity mode scale roughly as max~Mi-0.35Zeff1.5 and max~Mi-0.4Zeff1, respectively, for Zeff 3 and Zeff 3. The reason for the deviation of isotope scaling law from the normal case is investigated deliberately, and it is demonstrated that the isotope scaling index deviates from -0.5 more or less due to the fact that the impurity species, charge number and impurity concentrations vary in a certain range. These results demonstrate that it is impossible to deduce a unique isotope scaling law due to the variety of micro-instabilities and various plasma parameter regimes in tokamak plasma, which is consistent with the experimental observations. These results may contribute to the transport study involving heavy (tungsten) impurity ions in ITER discharge scenario investigation.
      Corresponding author: Shen Yong, sheny@swip.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFE0300405), the National Natural Science Foundation of China (Grant No. 11475057), and the Science and Technology Program of Sichuan Province, China (Grant No. 2016JY0196).
    [1]

    Sokolov V, Sen A K 2002 Phys. Rev. Lett. 89 095001

    [2]

    Lorenzini R, Agostini M, Auriemma F, Carraro L, de Masi G, Fassina A, Franz P, Gobbin M, Innocente P, Puiatti M E, Scarin P, Zaniol B, Zuin M 2015 Nucl. Fusion 55 043012

    [3]

    Urano H, Takizuka T, Aiba N, Kikuchi M, Nakano T, Fujita T, Oyama N, Kamada Y, Hayashi N, the JT-6 Team 2013 Nucl. Fusion 53 083003

    [4]

    Sokolov V, Sen A K 2003 Phys. Plasmas 10 3174

    [5]

    Bessenrodt-Weberpals M, Wagner F, ASDEX Team 1993 Nucl. Fusion 33 1205

    [6]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999

    [7]

    Goldston R 1984 Plasma Phys. Controll. Fusion 26 87

    [8]

    Hugill J, Sheffiled J 1978 Nucl. Fusion 18 15

    [9]

    Jacquinot J, the JET Team 1999 Plasma Phys. Control. Fusion 41 A13

    [10]

    ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Databases, ITER Physics Basic Editors 1999 Nucl. Fusion 39 2175

    [11]

    Schneider P A, Bustos A, Hennequin P, Ryter F, Bernert M, Cavedon M, Dunne M G, Fischer R, Grler T, Happel T, Igochine V, Kurzan B, Lebschy A, McDermott R M, Morel P, Willensdorfer M, the ASDEX Upgrade Team, the EUROfusion MST1 Team 2017 Nucl. Fusion 57 066003

    [12]

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese) [杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 62 245206]

    [13]

    Itoh S I, Itoh K 2012 Chin. Phys. B 21 095201

    [14]

    Li Q L, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东 2001 50 507]

    [15]

    Pusztai I, Mollen A, Fulop T, Candy J 2013 Plasma Phys. Control. Fusion 55 074012

    [16]

    Dong J Q, Horton W, Dorland W 1994 Phys. Plasmas 1 3635

    [17]

    Tokar M Z, Kalupin D, Unterberg B 2004 Phys. Rev. Lett. 92 215001

    [18]

    Connor J W, Pogutse O P 2001 Plasma Phys. Control. Fusion 43 155

    [19]

    Shen Y, Dong J Q, Sun A P, Qu H P, Lu G M, He Z X, He H D, Wang L F 2016 Plasma Phys. Control. Fusion 58 045028

    [20]

    Shen Y, Dong J Q, Han M K, Sun A P, Shi Z B 2018 Nucl. Fusion 58 076007

    [21]

    Lu H L, Wang S J 2009 Acta Phys. Sin. 58 354 (in Chinese) [陆赫林, 王顺金 2009 58 354]

    [22]

    Zhang K, Cui Z Y, Sun P, Dong C F, Deng W, Dong Y B, Song S D, Jiang M, Li Y G, Lu P, Yang Q W 2016 Chin. Phys. B 25 065202

    [23]

    Zhou Q, Wang B N, Wu Z W, Huang J 2005 Chin. Phys. B 14 2539

    [24]

    Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D, Yang Q W 2013 Chin. Phys. B 22 125201

    [25]

    Pusztai I, Candy J, Gohil P 2011 Phys. Plasmas 18 122501

    [26]

    Guo W X, Wang L, Zhuang G 2016 Phys. Plasmas 23 112301

    [27]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 52 1970]

    [28]

    Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X, Chen J M 2016 Chin. Phys. B 25 056102

    [29]

    Coppi B 1991 Proceedings of the 13th International Conference in Plasma Physics and Controlled Nuclear Fusion Research Washington, USA, July 3-7, 1990 p413

    [30]

    Dominguez R R 1991 Nucl. Fusion 31 2063

    [31]

    Chen L, Tsai S T 1983 Plasma Phys. 25 349

  • [1]

    Sokolov V, Sen A K 2002 Phys. Rev. Lett. 89 095001

    [2]

    Lorenzini R, Agostini M, Auriemma F, Carraro L, de Masi G, Fassina A, Franz P, Gobbin M, Innocente P, Puiatti M E, Scarin P, Zaniol B, Zuin M 2015 Nucl. Fusion 55 043012

    [3]

    Urano H, Takizuka T, Aiba N, Kikuchi M, Nakano T, Fujita T, Oyama N, Kamada Y, Hayashi N, the JT-6 Team 2013 Nucl. Fusion 53 083003

    [4]

    Sokolov V, Sen A K 2003 Phys. Plasmas 10 3174

    [5]

    Bessenrodt-Weberpals M, Wagner F, ASDEX Team 1993 Nucl. Fusion 33 1205

    [6]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999

    [7]

    Goldston R 1984 Plasma Phys. Controll. Fusion 26 87

    [8]

    Hugill J, Sheffiled J 1978 Nucl. Fusion 18 15

    [9]

    Jacquinot J, the JET Team 1999 Plasma Phys. Control. Fusion 41 A13

    [10]

    ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Databases, ITER Physics Basic Editors 1999 Nucl. Fusion 39 2175

    [11]

    Schneider P A, Bustos A, Hennequin P, Ryter F, Bernert M, Cavedon M, Dunne M G, Fischer R, Grler T, Happel T, Igochine V, Kurzan B, Lebschy A, McDermott R M, Morel P, Willensdorfer M, the ASDEX Upgrade Team, the EUROfusion MST1 Team 2017 Nucl. Fusion 57 066003

    [12]

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese) [杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 62 245206]

    [13]

    Itoh S I, Itoh K 2012 Chin. Phys. B 21 095201

    [14]

    Li Q L, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东 2001 50 507]

    [15]

    Pusztai I, Mollen A, Fulop T, Candy J 2013 Plasma Phys. Control. Fusion 55 074012

    [16]

    Dong J Q, Horton W, Dorland W 1994 Phys. Plasmas 1 3635

    [17]

    Tokar M Z, Kalupin D, Unterberg B 2004 Phys. Rev. Lett. 92 215001

    [18]

    Connor J W, Pogutse O P 2001 Plasma Phys. Control. Fusion 43 155

    [19]

    Shen Y, Dong J Q, Sun A P, Qu H P, Lu G M, He Z X, He H D, Wang L F 2016 Plasma Phys. Control. Fusion 58 045028

    [20]

    Shen Y, Dong J Q, Han M K, Sun A P, Shi Z B 2018 Nucl. Fusion 58 076007

    [21]

    Lu H L, Wang S J 2009 Acta Phys. Sin. 58 354 (in Chinese) [陆赫林, 王顺金 2009 58 354]

    [22]

    Zhang K, Cui Z Y, Sun P, Dong C F, Deng W, Dong Y B, Song S D, Jiang M, Li Y G, Lu P, Yang Q W 2016 Chin. Phys. B 25 065202

    [23]

    Zhou Q, Wang B N, Wu Z W, Huang J 2005 Chin. Phys. B 14 2539

    [24]

    Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D, Yang Q W 2013 Chin. Phys. B 22 125201

    [25]

    Pusztai I, Candy J, Gohil P 2011 Phys. Plasmas 18 122501

    [26]

    Guo W X, Wang L, Zhuang G 2016 Phys. Plasmas 23 112301

    [27]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 52 1970]

    [28]

    Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X, Chen J M 2016 Chin. Phys. B 25 056102

    [29]

    Coppi B 1991 Proceedings of the 13th International Conference in Plasma Physics and Controlled Nuclear Fusion Research Washington, USA, July 3-7, 1990 p413

    [30]

    Dominguez R R 1991 Nucl. Fusion 31 2063

    [31]

    Chen L, Tsai S T 1983 Plasma Phys. 25 349

  • [1] Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan. Quantitative study on isotope effect of rubidium clusters. Acta Physica Sinica, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] Chen Ning-Fei, Wei Guang-Yu, Qiu Zhi-Yong. Effect of radial electric field on ion-temperature gradient driven mode stability. Acta Physica Sinica, 2023, 72(21): 215217. doi: 10.7498/aps.72.20230798
    [3] Huang Jie, Li Mo-Shan, Qin Cheng, Wang Xian-Qu. Simulation of ion temperature gradient mode in Chinese First Quasi-axisymmetric Stellarator. Acta Physica Sinica, 2022, 71(18): 185202. doi: 10.7498/aps.71.20220729
    [4] Liu Xuan, Gao Teng, Xie Shi-Jie. Isotope effect of carrier transport in organic semiconductors. Acta Physica Sinica, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [5] Yang Xiao-Rong, Wang Qiong, Ye Tang-Jin, Tudeng Ci-Ren. Continuous time random walk model with advection and diffusion as two distinct dynamical origins. Acta Physica Sinica, 2019, 68(13): 130501. doi: 10.7498/aps.68.20190088
    [6] Li Wen-Tao, Yu Wen-Tao, Yao Ming-Hai. H/D + Li2 LiH/LiD + Li reactions studied by quantum time-dependent wave packet approach. Acta Physica Sinica, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [7] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [8] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang, Cen Chao. Isotope effect on quantum thermal transport in a polyethylene chain. Acta Physica Sinica, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [9] Liu Chen, Sun Hong-Xiang, Yuan Shou-Qi, Xia Jian-Ping. Broadband acoustic focusing effect based on temperature gradient distribution. Acta Physica Sinica, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [10] Wang Ming-Xin, Wang Mei-Shan, Yang Chuan-Lu, Liu Jia, Ma Xiao-Guang, Wang Li-Zhi. Influence of isotopic effect on the stereodynamics of reaction H+NH→N+H2. Acta Physica Sinica, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [11] Ren Gui-Ming, Zheng Yuan-Yuan, Wang Ding, Wang Lin, Chen Xiao-Hong, Wang Ling, Ma Min, Liu Hua-Bing. Isotope effect of trihydride aluminum oxide. Acta Physica Sinica, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [12] Duan Zhi-Xin, Qiu Ming-Hui, Yao Cui-Xia. Quantum wave-packet and quasiclassical trajectory of reaction S(3P)+HD. Acta Physica Sinica, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [13] Yang Bo, Mei Dong-Cheng. Effect of non-Gaussian noise on negative mobliity. Acta Physica Sinica, 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [14] Xia Wen-Ze, Yu Yong-Jiang, Yang Chuang-Lu. Influences of isotopic variant and collision energy on the stereodynamics of the N(4S)+H2 reactive system. Acta Physica Sinica, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [15] Lu He-Lin, Chen Zhong-Yong, Li Yue-Xun, Yang Kai. Magnetic shear effect on zonal flow generation in ion-temperature-gradient mode turbulence. Acta Physica Sinica, 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [16] Xu Yan, Zhao Juan, Wang Jun, Liu Fang, Meng Qing-Tian. Influence of the collision energy and isotopic variant on the stereodynamics of reaction H+BrF→HBr+F. Acta Physica Sinica, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [17] Yu Chun-Ri, Wang Rong-Kai, Zhang Jie, Yang Xiang-Dong. Differential cross sections for collisions between He isotope atoms and HBr molecules. Acta Physica Sinica, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [18] Lu He-Lin, Wang Shun-Jin. Zonal flow dynamics in background of ion-temperature-gradient mode turbulence based on minimal freedom model. Acta Physica Sinica, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [19] Luo Wen-Lang, Ruan Wen, Zhang Li, Xie An-Dong, Zhu Zheng-He. Analytical potential energy function for tritium water molecule T2O(X1A1). Acta Physica Sinica, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [20] Wang Rong-Kai, Shen Guang-Xian, Song Xiao-Shu, Linghu Rong-Feng, Yang Xiang-Dong. Influence of He isotope on the differential cross section for He-NO collision system. Acta Physica Sinica, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
Metrics
  • Abstract views:  5955
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2018
  • Accepted Date:  18 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回
Baidu
map