搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚噻吩单链量子热输运的第一性原理研究

吴宇 蔡绍洪 邓明森 孙光宇 刘文江

引用本文:
Citation:

聚噻吩单链量子热输运的第一性原理研究

吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江

First-principle study on quantum thermal transport in a polythiophene chain

Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang
PDF
导出引用
  • 聚噻吩块体通常被视为绝热材料,其热导率小于1 Wm-1K-1.但近年发现对于室温下沿聚噻吩分子链方向排列的无定形聚噻吩纳米纤维,其热导率高于聚噻吩块体,可达4.4 Wm-1K-1.为了相对准确地揭示纳米尺度聚噻吩单链热输运的微观特征,从量子力学出发,在密度泛函理论计算的基础上,应用中间插入延展方法结合非平衡格林函数方法,对长度为25.107 nm、包含448个原子的聚噻吩单链的量子热输运及其同位素效应进行了研究,并与分子动力学方法模拟的结果进行了详细比较.结果表明:室温下32 nm长的纯聚噻吩单链热导率上限高达30.2 Wm-1K-1,与铅的热导率35 Wm-1K-1相近;相同掺杂比例(原子百分数)下C元素热导的同位素效应比S元素显著;室温下聚噻吩单链中12C,13C等比例随机掺杂时的同位素效应最为显著,此时聚噻吩单链的平均热导至少降低了30%;室温下纯聚噻吩单链的热导随C的相对原子质量增加近似呈反比例减小,随S的相对原子质量增加呈非线性单调增加.该研究对认识和调控聚噻吩这种新型功能材料的热输运特性具有积极的价值.
    Bulk polythiophene material is usually regarded as thermal insulator because it has low thermal conductivity (less than 1 Wm-1K-1). However, the report demonstrates that along the amorphous polythiophene nanofiber axis, the pure polythiophene nanofibers have high thermal conductivity (more than 4.4 Wm-1K-1), which is obviously higher than that of the bulk polythiophene material. In order to throw light on this situation, molecular dynamics (MD) method is used to detect the high thermal conductivity of a polythiophene chain. However, the MD method is highly sensitive to the choice of empirical potential function or simulation method. Even if the same potential function (ReaxFF potential function) is adopted, the thermal conductivity of a polythiophene chain could also have obviously different results. To overcome the instability of MD method, we use the first-principles to calculate the force constant tensor. In such a case the properties of quantum mechanics in a polythiophene chain can be reflected. In our algorithm, several disadvantages of MD that different potential functions or different simulation methods probably lead to very different thermal conductivities for the same transport system are avoided. Based on the density functional theory (DFT), the central insertion scheme (CIS) method and nonequilibrium Green's function (NEGF) approach are used to evaluate the isotope effect on thermal transport in a polythiophene chain, which includes 448 atoms in a scattering region and has a length of 25.107 nm. It is found that the thermal conductivity of a 32-nm-long pure polythiophene chain reaches 30.2 Wm-1K-1, which is close to the thermal conductivity of lead at room temperature. The reduction of average thermal conductance caused by C atom impurity is more remarkable than by S for a pure polythiophene chain when the mixing ratios of 13C to 12C and 36S to 32S are equal. The most outstanding isotope effect on quantum thermal transport appears when the mixing ratio of 13C to 12C is 1:1. It will cause the average thermal conductance to decrease by at least 30% in the polythiophene chain at room temperature. Moreover, we find that the thermal conductance of a pure polythiophene chain is inversely proportional to the atomic weight of carbon, and increases nonlinearly with the increasing atomic weight of sulfur. It is of significance to optimize the thermal conductance properties of polythiophene function material.
      通信作者: 蔡绍洪, caish@mail.gufe.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264005)、贵州省科学技术基金(批准号:黔科合J字[2012]2292号)和贵州省教育厅自然科学研究项目(批准号:黔教合KY字[2014]307)资助的课题.
      Corresponding author: Cai Shao-Hong, caish@mail.gufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11264005), the Foundation of Science and Technology Department of Guizhou Province, China (Grant No.[2012]2292), and the Natural Science Foundation of the Education Department of Guizhou Province, China (Grant No.[2014]307).
    [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Bulumulla C, Du J, Washington K E, Kularatne R N, Nguyen H Q, Michael C B, Stefan M C 2017 J. Mater. Chem. A 5 2473

    [3]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [4]

    Cowen L M, Atoyo J, Carnie M J, Baran D, Schroeder B C 2017 ECS J. Solid State Sci. Technol. 6 3080

    [5]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)[陈晓彬,段文晖 2015 64 186302]

    [6]

    Bouzzine S M, Salgado-Morn G, Hamidi M, Bouachrine M, Pacheco A G, Glossman-Mitnik D 2015 J. Chem. 2015 296386

    [7]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [8]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [9]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [10]

    Ouyang T, Chen Y P, Xie Y, Wei X L, Yang K K, Yang P, Zhong J X 2010 Phys. Rev. B 82 245403

    [11]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [12]

    Sevinli H, Sevik C, aın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [13]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 11 203

    [14]

    Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D Y, Majumdar A, Zettl A 2006 Phys. Rev. Lett. 97 085901

    [15]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 5 251

    [16]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [17]

    Lv W, Winters M, Deangelis F, Weinberg G, Henry A 2017 J. Phys. Chem. A 121 5586

    [18]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [19]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [22]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [23]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [24]

    Satoh M, Yamasaki H, Aoki S, Yoshino K 1988 Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 159 289

    [25]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [26]

    Nikolić B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [27]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [28]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [29]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [30]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [31]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [32]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [33]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [34]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [35]

    Fu M X, Shi G Q, Chen F G, Hong X Y 2002 Phys. Chem. Chem. Phys. 4 2685

    [36]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [37]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

    [38]

    Hu M, Giapis K P, Goicochea J V, Zhang X, Poulikakos D 2011 Nano Lett. 11 618

    [39]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [40]

    Zhou W X, Chen K Q 2014 Nature. Sci. Rep. 4 7150

    [41]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1]

    Reecht G, Scheurer F, Speisser V, Dappe Y J, Mathevet F, Schull G 2014 Phys. Rev. Lett. 112 047403

    [2]

    Bulumulla C, Du J, Washington K E, Kularatne R N, Nguyen H Q, Michael C B, Stefan M C 2017 J. Mater. Chem. A 5 2473

    [3]

    Singh V, Bougher T L, Weathers A, Singh V, Bougher T L, Weathers A, Cai Y, Bi K, Pettes M T, McMenamin S A, Lv W, Resler D P, Gattuso T R, Altman D H, Sandhage K H, Shi L, Henry A, Cola B A 2014 Nature Nanotech. 9 384

    [4]

    Cowen L M, Atoyo J, Carnie M J, Baran D, Schroeder B C 2017 ECS J. Solid State Sci. Technol. 6 3080

    [5]

    Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302 (in Chinese)[陈晓彬,段文晖 2015 64 186302]

    [6]

    Bouzzine S M, Salgado-Morn G, Hamidi M, Bouachrine M, Pacheco A G, Glossman-Mitnik D 2015 J. Chem. 2015 296386

    [7]

    Tan Z W, Wang J S, Chee K G 2011 Nano Lett. 11 214

    [8]

    Xu Y, Chen X B, Gu B L, Duan W H 2009 Appl. Phys. Lett. 95 233116

    [9]

    Xie Z X, Tang L M, Pan C N, Li K M, Chen K Q, Duan W H 2012 Appl. Phys. Lett. 100 073105

    [10]

    Ouyang T, Chen Y P, Xie Y, Wei X L, Yang K K, Yang P, Zhong J X 2010 Phys. Rev. B 82 245403

    [11]

    Zhang H J, Lee G, Fonseca A F, Borders T L, Cho K 2010 J. Nanomater. 7 537657

    [12]

    Sevinli H, Sevik C, aın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228

    [13]

    Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K, Cai W W, Balandin A A, Ruoff R S 2012 Nature Mater. 11 203

    [14]

    Chang C W, Fennimore A M, Afanasiev A, Okawa D, Ikuno T, Garcia H, Li D Y, Majumdar A, Zettl A 2006 Phys. Rev. Lett. 97 085901

    [15]

    Shen S, Henry A, Tong J, Zheng R T, Chen G 2010 Nature Nanotech. 5 251

    [16]

    Jiang J W, Zhao J H, Zhou K, Rabczuk T 2012 J. Appl. Phys. 111 124304

    [17]

    Lv W, Winters M, Deangelis F, Weinberg G, Henry A 2017 J. Phys. Chem. A 121 5586

    [18]

    Gao B, Jiang J, Liu K, Wu Z Y, Lu W, Luo Y 2007 J. Comput. Chem. 29 434

    [19]

    Jiang J, Liu K, Lu W, Luo Y 2006 J. Chem. Phys. 124 214711

    [20]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [21]

    Wang J S, Wang J, L J T 2008 Eur. Phys. J. B 62 381

    [22]

    Yamamoto T, Watanabe S, Watanabe K 2004 Phys. Rev. Lett. 92 075502

    [23]

    Mingo N, Yang L 2003 Phys. Rev. B 68 245406

    [24]

    Satoh M, Yamasaki H, Aoki S, Yoshino K 1988 Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 159 289

    [25]

    Mingo N, Stewart D A, Broido D A, Srivastava D 2008 Phys. Rev. B 77 033418

    [26]

    Nikolić B K, Saha K K, Markussen T, Thygesen K S 2012 J. Comput. Electron. 11 78

    [27]

    Hu W P, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y Q, Zhu D B, Torimitsu K 2006 Phys. Rev. Lett. 96 027801

    [28]

    Jiang J, Gao B, Han T T, Fu Y 2009 Appl. Phys. Lett. 94 092110

    [29]

    Jiang J, Sun L, Gao B, Wu Z Y, Lu W, Yang J L, Luo Y 2010 J. Appl. Phys. 108 094303

    [30]

    Savic I, Mingo N, Stewart D A 2008 Phys. Rev. Lett. 101 165502

    [31]

    Stewart D A, Savic I, Mingo N 2009 Nano Lett. 9 81

    [32]

    Markussen T, Jauho A P, Brandbyge M 2009 Phys. Rev. B 79 035415

    [33]

    Markussen T, Rurali R, Jauho A P, Brandbyge M 2007 Phys. Rev. Lett. 99 076803

    [34]

    Rego L G C, Kirczenow G 1998 Phys. Rev. Lett. 81 232

    [35]

    Fu M X, Shi G Q, Chen F G, Hong X Y 2002 Phys. Chem. Chem. Phys. 4 2685

    [36]

    Jiang J W, Lan J H, Wang J S, Li B W 2010 J. Appl. Phys. 107 054314

    [37]

    Yang N, Zhang G, Li B W 2008 Nano Lett. 8 276

    [38]

    Hu M, Giapis K P, Goicochea J V, Zhang X, Poulikakos D 2011 Nano Lett. 11 618

    [39]

    Liu Y Y, Zhou W X, Tang L M, Chen K Q 2014 Appl. Phys. Lett. 105 203111

    [40]

    Zhou W X, Chen K Q 2014 Nature. Sci. Rep. 4 7150

    [41]

    Zhou W X, Chen K Q 2015 Carbon 85 24

  • [1] 邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇. 铷簇同位素效应的量化研究.  , 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [3] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应.  , 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应.  , 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [6] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响.  , 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [7] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响.  , 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [8] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [9] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超. 聚乙烯单链量子热输运的同位素效应.  , 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [10] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性.  , 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [11] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [12] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响.  , 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [13] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用.  , 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [14] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应.  , 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [15] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响.  , 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [16] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质.  , 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [17] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [18] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面.  , 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [19] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响.  , 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [20] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数.  , 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
计量
  • 文章访问数:  6573
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-08-13
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map