-
The electrical characteristics of Ni electrode-based metal-insulator-metal (MIM) capacitors have been investigated with atomic layer deposited ZrO2/SiO2/ZrO2 symmetric stacked-dielectrics. When the thickness of the stacked-dielectrics is fixed at 14 nm, the resulted capacitance density decreases from 13.1 fF/m2 to 9.3 fF/m2, and the dissipation factor is reduced from 0.025 to 0.02. By comparison of current-voltage (I-V) curves of different MIM capacitors, it is found that the leakage current density in the high voltage region decreases gradually with the increasing thickness of SiO2, and it does not exhibit clear change in the low voltage region. Meanwhile, the capacitors show different conduction behaviors under positive and negative biases with increasing the thickness of SiO2 from 0 to 2 nm. Under the positive bias, different I-V characteristics are demonstrated at high and low electric fields, respectively. However, a single I-V characteristic is dominant under the negative bias. Further, the conduction mechanisms of the capacitors are investigated under the electron bottom and top injection modes, respectively. It is found that the Poole-Frenkel emission and the trap-assisted tunneling are dominant in the high and low field regions, respectively, for the electron bottom injection; however, the trap-assisted tunneling is dominant in the whole field region for the electron top injection. These are attributed to the formation of a thin NiOx interfacial layer between the Ni bottom-electrode and the ZrO2 dielectric layer, as well as the existence of both deep and shallow level traps (0.9 and 2.3 eV) in the ZrO2 dielectric. Therefore, the level trap plays a key role in the electron conduction in the MIM capacitor under different electron injection modes and different electric fields.
-
Keywords:
- metal-insulator-metal capacitor /
- conduction mechanism /
- ZrO2/SiO2/ZrO2 stacked-dielectric /
- Ni electrodes
[1] Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516
[2] Mangla O, Gupta V 2016 J. Mater Sci. 27 12537
[3] Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901
[4] Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 IEEE Trans. Electron Devices 53 2312
[5] Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107
[6] Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803
[7] Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建宇, 丁士进, 张卫 2008 58 3433]
[8] Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492
[9] Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴敏生 2003 材料研究学报 17 332]
[10] Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 IEEE Electron Device Lett. 30 219
[11] Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett. 31 114
[12] Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506
[13] Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304
[14] Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106
[15] Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121
[16] Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289
[17] Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 IEEE Electron Device Lett. 25 538
[18] Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683
[19] Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45
[20] Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 IEEE Electron Device Lett. 28 235
[21] Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518
[22] Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706
[23] Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503
[24] Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154
[25] Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902
[26] Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874
[27] Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154
[28] Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124
[29] Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523
[30] Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109
[31] Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104
[32] Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144
[33] Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501
[34] Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612
[35] Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501
[36] Mondal S, Pan T M 2011 IEEE Electron Device Lett. 32 1576
[37] Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749
[38] Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105
[39] Ramanathan S, Park C M, Mclntyre P C 2002 J. Appl. Phys. 91 4521
[40] Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719
[41] Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657
[42] Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615
[43] Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159
[44] Peck M A, Langell M A 2012 Chem. Mater. 24 4483
[45] Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156
-
[1] Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516
[2] Mangla O, Gupta V 2016 J. Mater Sci. 27 12537
[3] Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901
[4] Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 IEEE Trans. Electron Devices 53 2312
[5] Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107
[6] Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803
[7] Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建宇, 丁士进, 张卫 2008 58 3433]
[8] Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492
[9] Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴敏生 2003 材料研究学报 17 332]
[10] Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 IEEE Electron Device Lett. 30 219
[11] Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett. 31 114
[12] Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506
[13] Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304
[14] Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106
[15] Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121
[16] Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289
[17] Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 IEEE Electron Device Lett. 25 538
[18] Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683
[19] Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45
[20] Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 IEEE Electron Device Lett. 28 235
[21] Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518
[22] Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706
[23] Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503
[24] Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154
[25] Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902
[26] Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874
[27] Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154
[28] Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124
[29] Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523
[30] Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109
[31] Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104
[32] Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144
[33] Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501
[34] Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612
[35] Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501
[36] Mondal S, Pan T M 2011 IEEE Electron Device Lett. 32 1576
[37] Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749
[38] Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105
[39] Ramanathan S, Park C M, Mclntyre P C 2002 J. Appl. Phys. 91 4521
[40] Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719
[41] Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657
[42] Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615
[43] Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159
[44] Peck M A, Langell M A 2012 Chem. Mater. 24 4483
[45] Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156
Catalog
Metrics
- Abstract views: 6627
- PDF Downloads: 240
- Cited By: 0