Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy

Fan Zheng-Fu Tan Zhi-Yong Wan Wen-Jian Xing Xiao Lin Xian Jin Zuan-Ming Cao Jun-Cheng Ma Guo-Hong

Citation:

Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy

Fan Zheng-Fu, Tan Zhi-Yong, Wan Wen-Jian, Xing Xiao, Lin Xian, Jin Zuan-Ming, Cao Jun-Cheng, Ma Guo-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Low-temperature-grown GaAs (LT-GaAs) possesses high carrier mobility, fast charge trapping, high dark resistance, and large threshold breakdown voltage, which make LT-GaAs a fundamental material for fabricating the ultrafast photoconductive switch, high efficient terahertz emitter, and high sensitive terahertz detector. Although lots of researches have been done on the optical and optoelectrical properties of LT-GaAs, the ultrafast dynamics of the photoexcitation and the relaxation mechanism are still unclear at present, especially when the photocarrier density is close to or higher than the defect density in the LT-GaAs, the dispersion of photocarriers shows a complicated pump fluence dependence. With the development of THz science and technology, the terahertz spectroscopy has become a powerful spectroscopic method, and the advantages of this method are contact-free, highly sensitive to free carriers, and sub-picosecond time resolved. In this article, by employing optical pump and terahertz probe spectroscopy, we investigate the ultrafast carrier dynamics of photogenerated carriers in LT-GaAs. The results reveal that the LT-GaAs has an ultrafast carrier capture process in contrast with that in GaAs wafer. The photoconductivity in LT-GaAs increases linearly with pump fluence at low power, and the saturation can be reached when the pump fluence is higher than 54 J/cm2. It is also found that the fast process shows a typical relaxation time of a few ps contributed by the capture of defects in the LT-GaAs, which is strongly dependent on pump fluence: higher pump fluence shows longer relaxation time and larger carrier mobility. By employing Cole-Cole Drude model, we can reproduce the photoconductivity well. Our results reveal that photocarrier relaxation time is dominated by the carrier-carrier Coulomb interaction: under low carrier density, the carrier-carrier Coulomb interaction is too small to screen the impurity-carrier scattering, and impurity-carrier scattering plays an important role in the photocarrier relaxation process. On the other hand, under high pump fluence excitation, the carrier-carrier Coulomb interaction screens partially the impurity-carrier scattering, which leads to the reduction of impurity-carrier scattering rate. As a result, the photocarrier lifetime and mobility increase with increasing pump fluence. The experimental findings provide fundamental information for developing and designing an efficient THz emitter and detector.
      Corresponding author: Ma Guo-Hong, ghma@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674213, 11604202, 61405233), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2011YQ150021), and the Research Innovation Fund of the Shanghai Education Committee, China (Grant No. 14ZZ101).
    [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 1999 Phys. Rev. B 62 61

    [3]

    Segschneider G, Dekorsy T, Kurz H, Hey R, Ploog K 1997 Appl. Phys. Lett. 71 2779

    [4]

    Krotkus A, Bertulis K, Dapkus L, Olin U, Marcinkevicius S 1999 Appl. Phys. Lett. 75 3336

    [5]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [6]

    Camus E C, Hughes J L, Johnston M B 2005 Phys. Rev. B 71 195301

    [7]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284

    [8]

    Melloch M, Woodall J, Harmon E, Otsuka N, Pollak F, Nolte D, Feenstra R, Lutz M 1995 Annu. Rev. Mater. Sci. 25 547

    [9]

    Weber Z L, Cheng H, Gupta S, Whitaker J, Nichols K, Smith F 1993 J. Electron. Mater. 22 1465

    [10]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [11]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [12]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764

    [13]

    Lui K P H, Hegmann F A 2001 Appl. Phys. Lett. 78 3478

    [14]

    Kadlec F, Nemec H, Kuzel P 2004 Phys. Rev. B 70 125205

    [15]

    Shi Y L, Zhou Q L, Zhang C L, Jin B 2008 Appl. Phys. Lett. 93 121115

    [16]

    Gao F, Carr L, Porter C D, Tanner D B, Williams G P, Hierschmugl C J, Dutta B, Wu X D, Etemad S 1996 Phys. Rev. B 54 700

    [17]

    Porte H P, Jepsen P U, Daghestani N, Rafailov E U, Turchinovich D 2009 Appl. Phys. Lett. 94 262104

    [18]

    Haiml M, Grange R, Keller U 2004 Appl. Phys. B 79 331

    [19]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [20]

    Jeon T I, Grischkowsky D 1997 Phys. Rev. Lett. 78 1106

    [21]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 2259

    [22]

    Mics Z, Angio A D, Jensen S A, Bonn M, Turchinovich D 2013 Appl. Phys. Lett. 102 231120

    [23]

    Kostakis I, Missous M 2013 AIP Adv. 3 092131

    [24]

    Kostakis I, Saeedkia D, Missous M 2012 IEEE Trans. Terahertz Sci. Technol. 2 617

  • [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 1999 Phys. Rev. B 62 61

    [3]

    Segschneider G, Dekorsy T, Kurz H, Hey R, Ploog K 1997 Appl. Phys. Lett. 71 2779

    [4]

    Krotkus A, Bertulis K, Dapkus L, Olin U, Marcinkevicius S 1999 Appl. Phys. Lett. 75 3336

    [5]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [6]

    Camus E C, Hughes J L, Johnston M B 2005 Phys. Rev. B 71 195301

    [7]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284

    [8]

    Melloch M, Woodall J, Harmon E, Otsuka N, Pollak F, Nolte D, Feenstra R, Lutz M 1995 Annu. Rev. Mater. Sci. 25 547

    [9]

    Weber Z L, Cheng H, Gupta S, Whitaker J, Nichols K, Smith F 1993 J. Electron. Mater. 22 1465

    [10]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [11]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [12]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764

    [13]

    Lui K P H, Hegmann F A 2001 Appl. Phys. Lett. 78 3478

    [14]

    Kadlec F, Nemec H, Kuzel P 2004 Phys. Rev. B 70 125205

    [15]

    Shi Y L, Zhou Q L, Zhang C L, Jin B 2008 Appl. Phys. Lett. 93 121115

    [16]

    Gao F, Carr L, Porter C D, Tanner D B, Williams G P, Hierschmugl C J, Dutta B, Wu X D, Etemad S 1996 Phys. Rev. B 54 700

    [17]

    Porte H P, Jepsen P U, Daghestani N, Rafailov E U, Turchinovich D 2009 Appl. Phys. Lett. 94 262104

    [18]

    Haiml M, Grange R, Keller U 2004 Appl. Phys. B 79 331

    [19]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [20]

    Jeon T I, Grischkowsky D 1997 Phys. Rev. Lett. 78 1106

    [21]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 2259

    [22]

    Mics Z, Angio A D, Jensen S A, Bonn M, Turchinovich D 2013 Appl. Phys. Lett. 102 231120

    [23]

    Kostakis I, Missous M 2013 AIP Adv. 3 092131

    [24]

    Kostakis I, Saeedkia D, Missous M 2012 IEEE Trans. Terahertz Sci. Technol. 2 617

  • [1] Bai Wen-Qing, Yang Jiang-Tao, Yang Cui-Hong, Chen Yun-Yun. Interband optical conductivity in electromagnetic field modulated strained black phosphorene. Acta Physica Sinica, 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [2] Wu Yang, Hu Xiao, Liu Bo-Wen, Gu Yi, Zha Fang-Xing. Different spectral features near the energy bandgaps of normal and inverse heterostructures of In0.52Al0.48As/InP. Acta Physica Sinica, 2024, 73(2): 027801. doi: 10.7498/aps.73.20231339
    [3] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [4] Zhong Zi-Yuan, He Kai, Yuan Yun, Wang Tao, Gao Gui-Long, Yan Xin, Li Shao-Hui, Yin Fei, Tian Jin-Shou. Photorefractive effect of low-temperature-grown aluminum gallium arsenide. Acta Physica Sinica, 2019, 68(16): 167801. doi: 10.7498/aps.68.20190459
    [5] Jin Zuan-Ming, Ruan Shun-Yi, Li Ju-Geng, Lin Xian, Ren Wei, Cao Shi-Xun, Ma Guo-Hong, Yao Jian-Quan. Research progress of coherent control of terahertz spin waves and strong coupling in rare-earth orthoferrites. Acta Physica Sinica, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [6] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [7] Zhao Jing, Yu Hui-Long, Liu Wei-Wei, Guo Jing. Analysis of the relation between spectral response and absorptivity of GaAs photocathode. Acta Physica Sinica, 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [8] Shi Wei, Yan Zhi-Jin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter. Acta Physica Sinica, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [9] Chen Xiao-Lan, Zhang Yun, Ran Qi-Yi. Photo-conductivity decay properties of Fe-doped congruent lithium niobate crystals. Acta Physica Sinica, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [10] Zheng Xin, Jiang Tian, Cheng Xiang-Ai, Jiang Hou-Man, Lu Qi-Sheng. A new phenomenon of photoconductive InSb detector under the irradiation of out-band laser. Acta Physica Sinica, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [11] Wang Guang-Tao, Zhang Min-Ping, Li Zhen, Zheng Li-Hua. Orbital ordering and its origin of KCrF3. Acta Physica Sinica, 2012, 61(3): 037102. doi: 10.7498/aps.61.037102
    [12] Xu Jia, Dong Zhan-Min, Li Yi, Sun Jia-Lin, Sun Hong-San. Fabrication, temperature-conductance and photoconductance characteristics of the macroscopic-long Ag2S nanowire bundle. Acta Physica Sinica, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [13] Jia Wan-Li, Shi Wei, Qu Guang-Hui, Sun Xiao-Fang. The calculation of terahertz wave power radiated from GaAs photoconductive antenna. Acta Physica Sinica, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [14] Jia Wan-Li, Shi Wei, Ji Wei-Li, Ma De-Ming. Study of the dipole characteristic of terahertz wave emitted from photoconductor switches. Acta Physica Sinica, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [15] Shi Wei, Ma De-Ming, Zhao Wei. Generation of steady and jitter-free ultra-fast electrical pulses with GaAs photoconductive switches. Acta Physica Sinica, 2004, 53(6): 1716-1720. doi: 10.7498/aps.53.1716
    [16] Shu Zheng-Huang, Dong Jin-Ming. Affect of the orbital ordering in half-doped manganites on their optical propert ies. Acta Physica Sinica, 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
    [17] Zhang Shi-Bin, Kong Guang-Lin, Xu Yan-Yue, Wang Yong-Qian, Diao Hong-Wei, Liao Xian-Bo. . Acta Physica Sinica, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [18] YUAN XIAN-ZHANG, PEI HUI-YUAN, LU WEI, LI NING, SHI GUO-LIANG, FANG JIA-XIONG, SHEN XUE-CHU. INFRAREDPHOTOCONDUCTIVITYSPECTRAOFDEEPLEVELS IN Zn0.04Cd0.96Te. Acta Physica Sinica, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [19] ZHANG DE-HENG, LIU YUN-YAN, ZHANG DE-JUN. THE UV PHOTOCONDUCTIVITY OF n-TYPE GaN FILMSDEPOSITED BY MOCVD. Acta Physica Sinica, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
    [20] MO DANG, PAN SHI-HONG, W. E. SPICER, I. LINDAU. PHOTOELECTRON SPECTROSCOPY FOR VALENCE BAND OF SILVER AND GOLD FILMS ON GALLIUM ARSENIDE. Acta Physica Sinica, 1983, 32(11): 1467-1470. doi: 10.7498/aps.32.1467
Metrics
  • Abstract views:  7603
  • PDF Downloads:  345
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2016
  • Accepted Date:  19 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map