-
Polar molecule dominated electrorheological (ER) fluid is a new type of ER material with high shear stress. The alignment of polar molecules adsorbed on the dielectric particles in the direction of the high local field between the particles plays a decisive role in such new ER fluids. In measuring the current density of ER fluid composed of Ca—Ti—O particles, it was found that the conductive behavior of the fluid exhibits Poole-Frenkel character, which is one of the particular features for polar molecule dominated electrorheological fluids. By heating the Ca—Ti—O particles at 500 ℃ to remove the polar molecules adsorbed on the particles, however, the current density of ER fluid fabricated with pure Ca—Ti—O particles has linear dependence on the electric field approximately, same as in the traditional ER fluids.
-
Keywords:
- electrorheological fluids /
- polar molecule /
- conduction mechanism /
- Poole-Frenkel
[1] Winslow W M 1949 J. Appl. Phys. 20 1137
[2] Klass D L, Martinek T W 1967 J. Appl. Phys. 38 67
[3] Stangroom J E, Harness I 1987 Patent GB 2 153 372
[4] Block H, Kelly J P 1988 Patent GB 2 170 510
[5] Block H, Kelly J P 1996 Eurpean Patent EP 191 585
[6] Ma H R, Wen W J, Tam W Y, Shen P 1996 Phys. Rev. Lett. 77 2499
[7] Zhang Y L, Lu K Q, Rao G H, Tian Y, Zhang S H, Liang J K 2002 Appl. Phys. Lett. 80 888
[8] Wen W J, Huang X X, Yang S H, Lu K Q, Shen P 2003 Nat. Mater. 2 727
[9] Yin J B, Zhao X P 2004 Chem. Phys. Lett. 398 393
[10] Lu K Q, Shen R, Wang X Z, Sun G, Wen W J 2005 Int. J. Mod. Phys. B 19 1065
[11] Shen R, Wang X Z, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1104
[12] Wang X Z, Shen R, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1110
[13] Wang X Z, Shen R, Wen W J, Lu K Q 2006 J. Funct. Mat. 37 681 (in Chinese) [王学昭、 沈 容、 温维佳、 陆坤权 2006 功能材料 37 681]
[14] Lu K Q, Shen R, Wang X Z, Sun G, Wen W J, Liu J X 2006 Chin. Phys. 15 2476
[15] Wen W J, Men S, Lu K Q 1997 Phys. Rev. E 55 3015
[16] Frenkel J 1938 Phys. Rev. 54 647
[17] Shen P 2005 Int. J. Mod. Phys. B 19 1157
[18] Tao R, Jiang Q, Sim H K 1995 Phys. Rev. E 52 2727
[19] Gonon P, Foulc J N, Atten P, Boissy C 1999 J. Appl. Phys. 86 7160
[20] Davis L C 1997 J. Appl. Phys. 81 1985
-
[1] Winslow W M 1949 J. Appl. Phys. 20 1137
[2] Klass D L, Martinek T W 1967 J. Appl. Phys. 38 67
[3] Stangroom J E, Harness I 1987 Patent GB 2 153 372
[4] Block H, Kelly J P 1988 Patent GB 2 170 510
[5] Block H, Kelly J P 1996 Eurpean Patent EP 191 585
[6] Ma H R, Wen W J, Tam W Y, Shen P 1996 Phys. Rev. Lett. 77 2499
[7] Zhang Y L, Lu K Q, Rao G H, Tian Y, Zhang S H, Liang J K 2002 Appl. Phys. Lett. 80 888
[8] Wen W J, Huang X X, Yang S H, Lu K Q, Shen P 2003 Nat. Mater. 2 727
[9] Yin J B, Zhao X P 2004 Chem. Phys. Lett. 398 393
[10] Lu K Q, Shen R, Wang X Z, Sun G, Wen W J 2005 Int. J. Mod. Phys. B 19 1065
[11] Shen R, Wang X Z, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1104
[12] Wang X Z, Shen R, Wen W J, Lu K Q 2005 Int. J. Mod. Phys. B 19 1110
[13] Wang X Z, Shen R, Wen W J, Lu K Q 2006 J. Funct. Mat. 37 681 (in Chinese) [王学昭、 沈 容、 温维佳、 陆坤权 2006 功能材料 37 681]
[14] Lu K Q, Shen R, Wang X Z, Sun G, Wen W J, Liu J X 2006 Chin. Phys. 15 2476
[15] Wen W J, Men S, Lu K Q 1997 Phys. Rev. E 55 3015
[16] Frenkel J 1938 Phys. Rev. 54 647
[17] Shen P 2005 Int. J. Mod. Phys. B 19 1157
[18] Tao R, Jiang Q, Sim H K 1995 Phys. Rev. E 52 2727
[19] Gonon P, Foulc J N, Atten P, Boissy C 1999 J. Appl. Phys. 86 7160
[20] Davis L C 1997 J. Appl. Phys. 81 1985
Catalog
Metrics
- Abstract views: 9523
- PDF Downloads: 687
- Cited By: 0