Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A modal domain beamforming approach for depth estimation by a horizontal array

Li Peng Zhang Xin-Hua Fu Liu-Fang Zeng Xiang-Xu

Citation:

A modal domain beamforming approach for depth estimation by a horizontal array

Li Peng, Zhang Xin-Hua, Fu Liu-Fang, Zeng Xiang-Xu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Distinguishing and recognizing water targets and underwater targets has been the focus of passive sonar detection. The depth of the target is closely related to the physical characteristics of the signal. In the shallow water waveguide, the normal mode theory can be used to give a good explanation to the acoustic signal physical properties. In this paper, a new method of beam forming in horizontal array modal domain is proposed. Under the condition of predicting target azimuth, the difference in acoustic path between the horizontal array elements corresponding to the direction of the target signal can be calculated according to the azimuthal information, and the phase delay of each normal mode component of the acoustic signal can be obtained. The horizontal wave number varies with order of normal mode, so each order of the normal mode has a specific phase delay. By using the beam forming principle, when the phase of a certain order of normal mode is compensated for, the output of the superposition of the signal on each element is the modal intensity of the normal mode. After obtaining the target signal modal intensity of each order, based on the shallow water condition, the modal intensities of sound source excitation at different depths are obtained as the reference mode intensities of the sound source at corresponding depths in the shallow water waveguide by simulating on Kracken software. Then, calculating the correlation coefficient between the target signal modal intensity of each order and the reference modal intensity of the sound source at each depth, we search for the maximum value of the correlation coefficient. The reference depth corresponding to the maximum value of the correlation peak is the estimated value of the target depth calculated by the method. Based on physical causes and characteristics of the normal modes, in this paper, the influences of the parameters such as the element number of horizontal array, depth of receiving array, signal-to-noise ratio, velocity profile, waveguide depth, azimuthal estimation accuracy, effective array length and application frequency band on the performance of this method are analyzed. The simulation results show that the algorithm can estimate the depth of the sound source effectively by using the signal sample with a bandwidth of 300 Hz when the signal-to-noise ratio is -10 dB. The wider the frequency band, the longer the effective array length, and the more the array element number, the higher the accuracy of azimuth estimation will be, which will bring beneficial effects to the depth estimation with the method. In addition, the depth estimation performance of the proposed method is still robust when the waveguide conditions such as the velocity profile and the seafloor parameters are disturbed.
      Corresponding author: Li Peng, 124588315@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271443, 61471378).
    [1]

    Yang K D, Ma Y L 2006 Acta Acustica 31 399 (in Chinese) [杨坤德, 马远良 2006 声学学报 31 399]

    [2]

    Xiao C 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [肖传 2011 博士学位论文(杭州: 浙江大学)]

    [3]

    Kim K, Seong W, Lee K 2010 IEEE J. Oceans Eng. 35 120

    [4]

    Cargar R M, Zurk L M 2013 J. Acoust. Soc. Am. 133 320

    [5]

    Premus V E, Ward J, Richmond C D 2004 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 7-10, 2004 p1415

    [6]

    Premus V E, Backman D A 2007 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 4-7, 2007 p1272

    [7]

    Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717

    [8]

    Jemmott C W, Culver R L 2011 IEEE J. Oceans Eng. 36 696

    [9]

    Dosso S E, Wilmut M J 2013 J. Acoust. Soc. Am. 133 274

    [10]

    Sun G C 2008 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [孙国仓 2008 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [11]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

    [12]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 58 6335]

    [13]

    Hui J Y, Sun G C, Zhao A B 2008 Acta Acustica 33 300 (in Chinese) [惠俊英, 孙国仓, 赵安邦 2008 声学学报 33 300]

    [14]

    Yand T C 2014 J. Acoust. Soc. Am. 135 1218

    [15]

    Okopal G, Loughlin P J, Cohen L 2008 J. Acoust. Soc. Am. 128 832

    [16]

    Li K, Fang S L, An L 2012 Acta Phys. Sin. 62 094303 (in Chinese) [李焜, 方世良, 安良 2012 62 094303]

    [17]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019

    [18]

    Zhang B H, Zhang X H, Liu J X 2011 Technical Acoustics 30 17 (in Chinese) [张本辉, 章新华, 刘家轩 2011 声学技术 30 17]

    [19]

    Kang C Y, Zhang X H, Han D 2009 Technical Acoustics 28 90 (in Chinese) [康春玉, 章新华, 韩东 2009 声学技术 28 90]

    [20]

    He X Y, Jiang X Z, Li Q H 2004 Acta Acustica 29 533 (in Chinese) [何心怡, 蒋兴舟, 李启虎 2004 声学学报 29 533]

    [21]

    Wang H, Kaveh M 1985 IEEE TASSP 33 823

    [22]

    Xu H B, Cao L, Wu D J 1993 J. Huazhong Univ. of Sci. Tech. 21 36 (in Chinese) [许海波, 曹力, 吴大进 1993 华中理工大学学报 21 36]

    [23]

    Wang N, Huang X S 2001 Science China Series A 31 857 (in Chinese) [王宁, 黄晓圣 2001 中国科学 31 857]

    [24]

    He Y J 2005 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese) [何永军 2005 硕士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [25]

    Tian T 2009 Sonar Technology (Harbin: Harbin Engineering University Press) p67 (in Chinese) [田坦 2009 声呐技术 (哈尔滨:哈尔滨工程大学出版社) 第67页]

    [26]

    He Z Y, Zhao Y F 1981 Foundnational Theory of Acoustics (Beijing: National Defense Industry Press) p113 (in Chinese) [何祚镛, 赵玉芳 1981 声学理论基础(北京: 国防工业出版社) 第113页]

  • [1]

    Yang K D, Ma Y L 2006 Acta Acustica 31 399 (in Chinese) [杨坤德, 马远良 2006 声学学报 31 399]

    [2]

    Xiao C 2011 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [肖传 2011 博士学位论文(杭州: 浙江大学)]

    [3]

    Kim K, Seong W, Lee K 2010 IEEE J. Oceans Eng. 35 120

    [4]

    Cargar R M, Zurk L M 2013 J. Acoust. Soc. Am. 133 320

    [5]

    Premus V E, Ward J, Richmond C D 2004 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 7-10, 2004 p1415

    [6]

    Premus V E, Backman D A 2007 IEEE Conference on Signals, Systems and Computers, Pacific Grove, November 4-7, 2007 p1272

    [7]

    Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717

    [8]

    Jemmott C W, Culver R L 2011 IEEE J. Oceans Eng. 36 696

    [9]

    Dosso S E, Wilmut M J 2013 J. Acoust. Soc. Am. 133 274

    [10]

    Sun G C 2008 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [孙国仓 2008 博士学位论文(哈尔滨: 哈尔滨工程大学)]

    [11]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]

    [12]

    Yu Y, Hui J Y, Chen Y, Sun G C, Teng C 2009 Acta Phys. Sin. 58 6335 (in Chinese) [余赟, 惠俊英, 陈阳, 孙国仓, 滕超 2009 58 6335]

    [13]

    Hui J Y, Sun G C, Zhao A B 2008 Acta Acustica 33 300 (in Chinese) [惠俊英, 孙国仓, 赵安邦 2008 声学学报 33 300]

    [14]

    Yand T C 2014 J. Acoust. Soc. Am. 135 1218

    [15]

    Okopal G, Loughlin P J, Cohen L 2008 J. Acoust. Soc. Am. 128 832

    [16]

    Li K, Fang S L, An L 2012 Acta Phys. Sin. 62 094303 (in Chinese) [李焜, 方世良, 安良 2012 62 094303]

    [17]

    Premus V E, Helfrick M N 2013 J. Acoust. Soc. Am. 133 4019

    [18]

    Zhang B H, Zhang X H, Liu J X 2011 Technical Acoustics 30 17 (in Chinese) [张本辉, 章新华, 刘家轩 2011 声学技术 30 17]

    [19]

    Kang C Y, Zhang X H, Han D 2009 Technical Acoustics 28 90 (in Chinese) [康春玉, 章新华, 韩东 2009 声学技术 28 90]

    [20]

    He X Y, Jiang X Z, Li Q H 2004 Acta Acustica 29 533 (in Chinese) [何心怡, 蒋兴舟, 李启虎 2004 声学学报 29 533]

    [21]

    Wang H, Kaveh M 1985 IEEE TASSP 33 823

    [22]

    Xu H B, Cao L, Wu D J 1993 J. Huazhong Univ. of Sci. Tech. 21 36 (in Chinese) [许海波, 曹力, 吴大进 1993 华中理工大学学报 21 36]

    [23]

    Wang N, Huang X S 2001 Science China Series A 31 857 (in Chinese) [王宁, 黄晓圣 2001 中国科学 31 857]

    [24]

    He Y J 2005 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese) [何永军 2005 硕士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [25]

    Tian T 2009 Sonar Technology (Harbin: Harbin Engineering University Press) p67 (in Chinese) [田坦 2009 声呐技术 (哈尔滨:哈尔滨工程大学出版社) 第67页]

    [26]

    He Z Y, Zhao Y F 1981 Foundnational Theory of Acoustics (Beijing: National Defense Industry Press) p113 (in Chinese) [何祚镛, 赵玉芳 1981 声学理论基础(北京: 国防工业出版社) 第113页]

  • [1] Wang Lei, Huang Yi-Wang, Guo Lin, Ren Chao. Acoustic scattering modeling and sound field characteristics of rough seafloor in shallow sea. Acta Physica Sinica, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] Deng Yu-Xin, Liu Xiong-Hou, Yang Yi-Xin. Analysis of line spectral fluctuation characteristics for source depth discrimination in shallow water. Acta Physica Sinica, 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [3] Zhou Yu-Yuan, Sun Chao, Xie Lei, Liu Zong-Wei. A method of estimating depth of moving sound source in shallow sea based on incoherently matched beam-wavenumber. Acta Physica Sinica, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [4] Li Xiao-Bin, Sun Chao, Liu Xiong-Hou. Source depth discrimination using peak migration line of cross-correlation output in shallow water having negative thermocline. Acta Physica Sinica, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [5] Zhang Shi-Zhao, Piao Sheng-Chun. Coherent mode coupling in shallow water overlaying sloping elastic ocean bottom. Acta Physica Sinica, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [6] Kong De-Zhi, Sun Chao, Li Ming-Yang, Zhuo Jie, Liu Xiong-Hou. Dimension-reduced generalized likelihood ratio detection based on sampling of normal modes in deep ocean. Acta Physica Sinica, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [7] Meng Rui-Jie, Zhou Shi-Hong, Li Feng-Hua, Qi Yu-Bo. Identification of interference normal mode pairs of low frequency sound in shallow water. Acta Physica Sinica, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [8] Jiang Guang-Yu, Sun Chao, Xie Lei, Liu Xiong-Hou. Influence of surface duct on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [9] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He. Warping transform of the refractive normal mode in a shallow water waveguide. Acta Physica Sinica, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [10] Qin Ji-Xing, Katsnelson Boris, Peng Zhao-Hui, Li Zheng-Lin, Zhang Ren-He, Luo Wen-Yu. Three-dimensional adiabatic mode parabolic equation method and its applications. Acta Physica Sinica, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [11] Sun Mei, Zhou Shi-Hong. Complex acoustic intensity with deep receiver in the direct-arrival zone in deep water and sound-ray-arrival-angle estimation. Acta Physica Sinica, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [12] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang, Yang Qiu-Long. A source range and depth estimation method based on modal dedispersion transform. Acta Physica Sinica, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [13] Liang Guo-Long, Tao Kai, Wang Jin-Jin, Fan Zhan. Broadband target beam-space transformation in generalized likelihood ratio test using acoustic vector sensor array. Acta Physica Sinica, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [14] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang. A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve. Acta Physica Sinica, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [15] Su Lin, Ma Li, Song Wen-Hua, Guo Sheng-Ming, Lu Li-Cheng. Influences of sound speed profile on the source localization of different depths. Acta Physica Sinica, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [16] Mo Ya-Xiao, Piao Sheng-Chun, Zhang Hai-Gang, Li Li. Mode coupling and energy transfer in a range-dependent waveguide. Acta Physica Sinica, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [17] Yu Yun, Hui Jun-Ying, Zhao An-Bang, Sun Guo-Cang, Teng Chao. Complex acoustic intensity of normal modes in Pekeris waveguide and its application. Acta Physica Sinica, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [18] Zhang Ren-he, Zhu Bai-xian. NORMAL-MODE SOUND FIELD OF DIRECTIONAL RADIATOR. Acta Physica Sinica, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [19] TANG YING-WU. THE NORMAL-MODE SOUND FIELD IN SHALLOW WATER HAVING A POSITIVE SOUND VELOCITY GRADIENT AND A RANDOM FLUCTUATION SURFACE. Acta Physica Sinica, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] . Acta Physica Sinica, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
Metrics
  • Abstract views:  7659
  • PDF Downloads:  271
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2016
  • Accepted Date:  16 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map