-
为了解决水下声矢量信号处理中的宽带目标被动探测问题, 提出了一种波束域的检测算法. 该算法借鉴人眼对空间谱的检测原理, 对波束域数据进行广义似然比检测. 首先结合干扰抑制问题和矢量环境噪声场特性, 探讨了波束域变换矩阵的设计准则, 并推导了解析解的形式; 然后在假定已知不含目标波束个数的情况下, 构建了波束域的概率密度模型, 并对模型中的未知参量进行最大似然估计, 进而给出了广义似然比检测器的形式; 最后应用信息论准则, 给出了不含目标波束个数的估计方法. 理论分析与仿真实验表明, 该算法在强目标干扰, 以及背景噪声功率谱起伏、时变等环境下, 始终具有更好的系统增益和恒虚警率特性. 湖上试验的结果进一步验证了算法的有效性.Aiming at the problem of passive detection of broadband sources in underwater acoustic vector signal processing, a novel detection algorithm based on beam-space transformation is proposed. The principle of spatial spectrum detection with human eyes is employed for reflerence, and the generalized likelihood ratio test (GLRT) is applied to the beam-space. First, the design criterion of beam-space transformation matrix is studied for the compreflensive consideration of the environment of multiple targets and the characteristic of vector ambient noise field, so that the analytical solution is obtained. Second, assuming that the number of beams not containing the target signal is given, the probability density function (PDF) model of beam-space data is constructed, and the new GLR test is made by calculating the maximum likelihood estimate of the unknown variables in PDF. Finally, the information of theoretical criterion is adopted in order to estimate the number of beams not containing target signals. The processing gain and the threshold value of this test statistics are also discussed, and the specific implement is explained in detail. Theoretical analysis and simulation results show that under the complex conditions of strong target interference and ambient noise with undulated and time-variant power spectrum, the proposed algorithm can give the processing result with higher gain and detection threshold at constant false alarm rate (CFAR); the results of lake experiment further prove the favorable and robust detection performance.
-
Keywords:
- array signal processing /
- signal detection /
- acoustic vector sensor /
- constant false alarm rate
[1] Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481
[2] Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337
[3] Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 62 144301]
[4] Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 63 034306]
[5] Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]
[6] Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46
[7] Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477
[8] Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045
[9] Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615
[10] Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101
[11] Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302
[12] Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]
[13] You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]
[14] Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]
[15] Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115
[16] Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208
[17] Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336
[18] Shuai X, Kong L, Yang J 2010 Signal Processing 90 16
[19] Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391
[20] Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]
[21] Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]
[22] Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22
[23] Richmond C D 1996 IEEE Trans. Signal Process. 44 305
-
[1] Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481
[2] Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337
[3] Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 62 144301]
[4] Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 63 034306]
[5] Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]
[6] Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46
[7] Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477
[8] Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045
[9] Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615
[10] Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101
[11] Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302
[12] Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]
[13] You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]
[14] Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]
[15] Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115
[16] Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208
[17] Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336
[18] Shuai X, Kong L, Yang J 2010 Signal Processing 90 16
[19] Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391
[20] Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]
[21] Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]
[22] Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22
[23] Richmond C D 1996 IEEE Trans. Signal Process. 44 305
计量
- 文章访问数: 6530
- PDF下载量: 358
- 被引次数: 0