-
In the direct-arrival zone in deep water, the sound ray arrival angle is one of the most important properties of the sound field. However, it is complicated to estimate the arrival angle only by using the information about the sound pressure. Vector sensors have significant advantages in direction-of-arrival estimation, and the acoustic energy flux detection is one of the most important estimation methods. In this paper, the properties of complex acoustic intensity in the direct-arrival zone in deep water are analyzed, and the arrival angles of sound rays are estimated with the complex acoustic intensity extracted from the experimental data. Firstly, the expressions of horizontal particle velocity, vertical particle velocity and complex sound intensity are provided based on the ray theory. It is shown that the amplitudes of the horizontal and vertical particle velocities and the components of the complex sound intensity are closely related to the sound ray arrival angle. The larger the sound ray arrival angle, the greater the vertical particle velocity and the vertical component of the complex sound intensity are, but the weaker the horizontal particle velocity and the horizontal component of the complex sound intensity are. Secondly, for the direct-arrival zone of the sound field generated by a shallow source in deep water, the properties of the complex sound intensity with deep receiver are analyzed based on the sound ray arrival structure. The theoretical and simulation results show that the arrival angles of the sound rays can be estimated with the complex sound intensities of pulses received by a deep receiver. The mean arrival angles of the direct ray and the surface-reflected ray can be estimated with the complex sound intensities of the pulses of the direct-arrival wave and the surface-reflected wave. The mean arrival angles of the bottom-reflected ray and the surface-reflected-bottom-reflected ray can be estimated with the complex sound intensities of the pulses of the bottom-reflected wave and the surface-reflected-bottom-reflected wave. The angle obtained with the complex sound intensity of the total field comprised of all sound rays is approximately equal to the mean arrival angles of the direct ray and the surfaced-reflected ray. Thirdly, the validity of the arrival angle estimation with the complex sound intensity is verified by the experimental data. During a deep water experiment conducted in 2014, a vector sensor was placed at a depth of 3146 m to receive the experimental signals. Within the range of 17 km, the vector sensor received the direct ray from the sound source towed at about 140 m. By using the pulses of the direct-arrival wave and the surface-reflected wave received by the vector sensor, the mean arrival angles of the direct rays and the surface-reflected rays are estimated. It is shown that the estimated arrival angles are consistent with the theoretical results.
-
Keywords:
- direct-arrival zone in deep water /
- deep receiver /
- complex sound intensity /
- sound ray arrival angle
[1] Urick R J, Lund G R 1968 J. Acoust. Soc. Am. 43 723
[2] Yang T C 1987 J. Acoust. Soc. Am. 82 1736
[3] Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757
[4] Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303
[5] Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J J, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031
[6] Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302
[7] Li J, Li Z L, Ren Y, Li W, Zhang R H 2015 Chin. Phys. Lett. 32 064303
[8] Gaul R D, Knobles D P, Shooter J A, Wittenborn A F 2007 IEEE J. Oceanic Eng. 32 497
[9] Urick R J 1983 Principles of Underwater Sound (3rd Ed.) (New York: McGraw-Hill)
[10] Baggeroer A B, Scheer E K, Heaney K, Spain G D, Worcester P, Dzieciuch M 2010 J. Acoust. Soc. Am. 128 2385
[11] Heaney K D, Campbell R C, Baggeroer A B, Spain G D, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386
[12] Westwood E K 1992 J. Acoust. Soc. Am. 91 2777
[13] McCargar R K, Zurk L M 2012 J. Acoust. Soc. Am. 132 2081
[14] McCargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320
[15] Zurk L M, Boyle J K, Shibley J 2013 Proceedings of the Asilomar Conference on Signals, Systems and Computers New York, America, November 3-6, 2013 p2130
[16] Kniffin G P, Boyle J K, Zurk L M, Siderius M 2016 J. Acoust. Soc. Am. 139 418
[17] Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301
[18] Duan R, Yang K, Ma Y, Yang Q, Li H 2014 J. Acoust. Soc. Am. 136 EL159
[19] Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acustica 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]
[20] Liu B S, Lei J Y 2002 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) pp101-116 (in Chinese) [刘伯胜, 雷家煜 2002 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第101-116页]
[21] Peng H S 2007 Ph. D. Dissertation (Beijing: Graduate University, Chinese Academy of Sciences) (in Chinese) [彭汉书 2007 博士学位论文 (北京: 中国科学院研究生院)]
[22] Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]
-
[1] Urick R J, Lund G R 1968 J. Acoust. Soc. Am. 43 723
[2] Yang T C 1987 J. Acoust. Soc. Am. 82 1736
[3] Tappert F D, Spiesberger J L, Wolfson M A 2002 J. Acoust. Soc. Am. 111 757
[4] Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303
[5] Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J J, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031
[6] Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302
[7] Li J, Li Z L, Ren Y, Li W, Zhang R H 2015 Chin. Phys. Lett. 32 064303
[8] Gaul R D, Knobles D P, Shooter J A, Wittenborn A F 2007 IEEE J. Oceanic Eng. 32 497
[9] Urick R J 1983 Principles of Underwater Sound (3rd Ed.) (New York: McGraw-Hill)
[10] Baggeroer A B, Scheer E K, Heaney K, Spain G D, Worcester P, Dzieciuch M 2010 J. Acoust. Soc. Am. 128 2385
[11] Heaney K D, Campbell R C, Baggeroer A B, Spain G D, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386
[12] Westwood E K 1992 J. Acoust. Soc. Am. 91 2777
[13] McCargar R K, Zurk L M 2012 J. Acoust. Soc. Am. 132 2081
[14] McCargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320
[15] Zurk L M, Boyle J K, Shibley J 2013 Proceedings of the Asilomar Conference on Signals, Systems and Computers New York, America, November 3-6, 2013 p2130
[16] Kniffin G P, Boyle J K, Zurk L M, Siderius M 2016 J. Acoust. Soc. Am. 139 418
[17] Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301
[18] Duan R, Yang K, Ma Y, Yang Q, Li H 2014 J. Acoust. Soc. Am. 136 EL159
[19] Sun G Q, Yang D S, Zhang L Y, Shi S G 2003 Acta Acustica 28 66 (in Chinese) [孙贵青, 杨德森, 张揽月, 时胜国 2003 声学学报 28 66]
[20] Liu B S, Lei J Y 2002 Principles of Underwater Acoustics (Harbin: Harbin Engineering University Press) pp101-116 (in Chinese) [刘伯胜, 雷家煜 2002 水声学原理 (哈尔滨: 哈尔滨工程大学出版社) 第101-116页]
[21] Peng H S 2007 Ph. D. Dissertation (Beijing: Graduate University, Chinese Academy of Sciences) (in Chinese) [彭汉书 2007 博士学位论文 (北京: 中国科学院研究生院)]
[22] Yu Y, Hui J Y, Zhao A B, Sun G C, Teng C 2008 Acta Phys. Sin. 57 5742 (in Chinese) [余赟, 惠俊英, 赵安邦, 孙国仓, 滕超 2008 57 5742]
Catalog
Metrics
- Abstract views: 6449
- PDF Downloads: 330
- Cited By: 0