Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband target beam-space transformation in generalized likelihood ratio test using acoustic vector sensor array

Liang Guo-Long Tao Kai Wang Jin-Jin Fan Zhan

Citation:

Broadband target beam-space transformation in generalized likelihood ratio test using acoustic vector sensor array

Liang Guo-Long, Tao Kai, Wang Jin-Jin, Fan Zhan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Aiming at the problem of passive detection of broadband sources in underwater acoustic vector signal processing, a novel detection algorithm based on beam-space transformation is proposed. The principle of spatial spectrum detection with human eyes is employed for reflerence, and the generalized likelihood ratio test (GLRT) is applied to the beam-space. First, the design criterion of beam-space transformation matrix is studied for the compreflensive consideration of the environment of multiple targets and the characteristic of vector ambient noise field, so that the analytical solution is obtained. Second, assuming that the number of beams not containing the target signal is given, the probability density function (PDF) model of beam-space data is constructed, and the new GLR test is made by calculating the maximum likelihood estimate of the unknown variables in PDF. Finally, the information of theoretical criterion is adopted in order to estimate the number of beams not containing target signals. The processing gain and the threshold value of this test statistics are also discussed, and the specific implement is explained in detail. Theoretical analysis and simulation results show that under the complex conditions of strong target interference and ambient noise with undulated and time-variant power spectrum, the proposed algorithm can give the processing result with higher gain and detection threshold at constant false alarm rate (CFAR); the results of lake experiment further prove the favorable and robust detection performance.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51279043, 61201411, 51209059), and the Science and Technology Foundation of State Key Laboratory of Underwater Acoustic Technology Laboratory, China (Grant No. 9140C200203110C2003).
    [1]

    Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [2]

    Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337

    [3]

    Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 62 144301]

    [4]

    Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 63 034306]

    [5]

    Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]

    [6]

    Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46

    [7]

    Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477

    [8]

    Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045

    [9]

    Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615

    [10]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [11]

    Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302

    [12]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [13]

    You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]

    [14]

    Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]

    [15]

    Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115

    [16]

    Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208

    [17]

    Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336

    [18]

    Shuai X, Kong L, Yang J 2010 Signal Processing 90 16

    [19]

    Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391

    [20]

    Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]

    [21]

    Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]

    [22]

    Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22

    [23]

    Richmond C D 1996 IEEE Trans. Signal Process. 44 305

  • [1]

    Nehorai A, Yang D S, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [2]

    Hawkes M, Nehorai A 2001 IEEE J. Oceanic Eng. 26 337

    [3]

    Lin W S, Liang G L, Fu J, Zang G P 2013 Acta Phys. Sin. 62 144301 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2013 62 144301]

    [4]

    Lin W S, Liang G L, Fu J, Zang G P 2014 Acta Phys. Sin. 63 034306 (in Chinese) [林旺生, 梁国龙, 付进, 张光普 2014 63 034306]

    [5]

    Harry L V T,(translated by Tang J) 2008 Optimum Array Processing (Beijing: Tsinghua University Press) pp323-326 (in Chinese) [Harry L V T 著 (汤俊译) 2008 最优阵列处理技术(北京: 清华大学出版社)第323-326页]

    [6]

    Yan S F, Hou C H, Ma X C, Ma Y L 2007 J. Acoust Soc. Am 121 46

    [7]

    Liao B, Tsui K M, Chan S C 2011 IEEE Trans. Antennas Propag. 59 3477

    [8]

    Sun H H, Yan S F, Svensson U P 2011 IEEE Trans. Audio Speech Lang. Process. 19 1045

    [9]

    Yu Z L, Ser W, Er M H, Gu Z H, Li Y Q 2009 IEEE Trans. Signal Process. 57 2615

    [10]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [11]

    Zhang B X, Liu D D, Shi F F, He F D 2013 Chin. Phys. B 22 014302

    [12]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [13]

    You H, Huang J G, Shi W T 2009 Acta Acoustic 32 527 (in Chinese) [游鸿, 黄建国, 史文涛 2009 声学学报 32 527]

    [14]

    Zhou W, Hui J Y 2010 Acta Armamentarhii 31 1188 (in Chinese) [周伟, 惠俊英 2010 兵工学报 31 1188]

    [15]

    Kelly E J 1986 IEEE Trans. on Aerosp. Electron. Syst. 22 115

    [16]

    Robey F C, Fuhrmann D R, Kelly E J, Nitzberg R 1992 IEEE Trans. on Aerosp. Electron. Syst. 28 208

    [17]

    Conte E, Maio A De, Ricci G 2001 IEEE Trans. Signal Process. 49 1336

    [18]

    Shuai X, Kong L, Yang J 2010 Signal Processing 90 16

    [19]

    Bandiera F, Besson O, Ricci G 2010 IEEE Trans. Signal Process. 58 5391

    [20]

    Shang X Q, Song H J 2012 Journal of Electronic & Information Technology 34 128 (in Chinese) [尚秀芹, 宋红军, 陈倩, 闫贺 2012 电子与信息学报 34 128]

    [21]

    Ma Q M, Wang X Y 2008 Acta Armamentarhii 29 153 (in Chinese) [马启明, 王宣银, 杜栓平 2008 兵工学报 29 153]

    [22]

    Hassanien A, Vorobyov S A 2009 IEEE Signal Process. Lett. 16 22

    [23]

    Richmond C D 1996 IEEE Trans. Signal Process. 44 305

  • [1] Wei Rong-Yu, Li Jun, Zhang Da-Ming, Wang Wei-Hao. Research on method of constant false alarm rate of entangled state quantum detection system. Acta Physica Sinica, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [2] Yin Xu-Kun, Dong Lei, Wu Hong-Peng, Liu Li-Xian, Shao Xiao-Peng. Design and optimization of photoacoustic CO gas sensor for fault diagnosis of SF6 gas insulated equipment. Acta Physica Sinica, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [3] Research on Constant False Alarm Detection Method of Entangled State Quantum Detection System. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211121
    [4] Cao Bao-Feng, Li Peng, Li Xiao-Qiang, Zhang Xue-Qin, Ning Wang-Shi, Liang Rui, Li Xin, Hu Miao, Zheng Yi. Detection and parameter estimation of weak pulse signal based on strongly coupled Duffing oscillators. Acta Physica Sinica, 2019, 68(8): 080501. doi: 10.7498/aps.68.20181856
    [5] Liu Jin-Jun, Leng Yong-Gang, Lai Zhi-Hui, Tan Dan. Stochastic resonance based on frequency information exchange. Acta Physica Sinica, 2016, 65(22): 220501. doi: 10.7498/aps.65.220501
    [6] Hu Jin-Feng, Zhang Ya-Xuan, Li Hui-Yong, Yang Miao, Xia Wei, Li Jun. Harmonic signal detection method from strong chaotic background based on optimal filter. Acta Physica Sinica, 2015, 64(22): 220504. doi: 10.7498/aps.64.220504
    [7] Yang Bo, Bu Xiong-Zhu, Wang Xin-Zheng, Yu Jing. A time-difference fluxgate with Gauss noise and weak sinusoidal signal excitation. Acta Physica Sinica, 2014, 63(20): 200702. doi: 10.7498/aps.63.200702
    [8] Wang Bo, Li Yu-Dong, Guo Qi, Liu Chang-Ju, Wen Lin, Ma Li-Ya, Sun Jing, Wang Hai-Jiao, Cong Zhong-Chao, Ma Wu-Ying. Research on dark signal degradation in 60Co γ-ray-irradiated CMOS active pixel sensor. Acta Physica Sinica, 2014, 63(5): 056102. doi: 10.7498/aps.63.056102
    [9] Huang Jin-Wang, Li Guang-Ming, Feng Jiu-Chao, Jin Jian-Xiu. A chaotic signal reconstruction algorithm in wireless sensor networks. Acta Physica Sinica, 2014, 63(14): 140502. doi: 10.7498/aps.63.140502
    [10] Huang Jin-Wang, Feng Jiu-Chao, Lü Shan-Xiang. Blind source separation of chaotic signals in wireless sensor networks. Acta Physica Sinica, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [11] Hao Ben-Jian, Li Zan, Wan Peng-Wu, Si Jiang-Bo. Passive source localization using RROA based on eigenvalue decomposition algorithm in WSNs. Acta Physica Sinica, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [12] Qi Hao, Wang Fu-Bao, Deng Hong. A novel approach to research on feature extraction of seismic wave signal based on wireless sensor networks. Acta Physica Sinica, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [13] Xu Xue-Mei, Dai Peng, Yang Bing-Chu, Yin Lin-Zi, Cao Jian, Ding Yi-Peng, Cao Can. Weak photoacoustic signal detection in photoacoustic cell. Acta Physica Sinica, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [14] Liang Guo-Long, Ma Wei, Fan Zhan, Wang Yi-Lin. A high resolution robust localization approach of high speed target based on vector sonar. Acta Physica Sinica, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [15] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Weak signal detection based on chaos and stochastic resonance. Acta Physica Sinica, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [16] Wang Meng-Jiao, Zeng Yi-Cheng, Xie Chang-Qing, Zhu Gao-Feng, Tang Shu-Hong. Application of Chen's system to detecting weak harmonic signals. Acta Physica Sinica, 2012, 61(18): 180502. doi: 10.7498/aps.61.180502
    [17] He Jing-Bo, Liu Zhong, Hu Sheng-Liang. Detection of weak signal based on the sea clutter scattering. Acta Physica Sinica, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [18] Wang Yong-Sheng, Jiang Wen-Zhi, Zhao Jian-Jun, Fan Hong-Da. A new method of weak signal detection using Duffing oscillator and its simulation research. Acta Physica Sinica, 2008, 57(4): 2053-2059. doi: 10.7498/aps.57.2053
    [19] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [20] ZHANG SHU-YING. A THEORETICAL ANALYSIS OF A COMPRESSED-TIME CORRELATOR FOR SIGNAL DETECTION. Acta Physica Sinica, 1976, 25(3): 235-245. doi: 10.7498/aps.25.235
Metrics
  • Abstract views:  6551
  • PDF Downloads:  358
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2014
  • Accepted Date:  04 November 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map