-
As precursors exfoliated from graphite oxide gels, graphene oxide thin films are annealed in a temperature range of 100 ℃ to 350 ℃ to obtain a series of reduced graphene oxide samples with different reduction degrees. For the gas sensing experiments, the reduced graphene oxide thin film gas sensing element is prepared by spin coating with Ag-Pd integrated electronic device (Ag-Pd IED). The functional groups, structures, and gas sensing performance of all the samples are investigated by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and gas sensing measurement. The results show that the structure of the graphene oxide samples are transformed to the graphitic structure after reduction at different thermal treatment temperatures. When the reduction temperature is lower than 150 ℃, materials exhibit features of graphite oxide. When the reduction temperature reaches about 200 ℃, the samples show characteristics transformed from graphite oxide to reduced graphite oxide gradually. When the temperature is higher than 250 ℃, materials show features of reduced graphite oxide. During the reduction process, the disorder degree increases from 0.85 to 1.59, and then decreases slightly to 1.41 with the rise of temperature. Additionally, the oxygen containing functional groups are removed with the increasing reduction temperature, and these functional groups can be removed at specific temperatures. In the lower temperature stage (100-200 ℃), the first kind of oxygen containing functional group removed is the hydroxyl group (C-OH) and the epoxy group (C-O-C) is the second. In the higher temperature stage (250-350 ℃), the main removed oxygen containing functional groups are the epoxy group (C-O-C) and the carbonyl group (C=O). The materials treated at 150, 200, 350 ℃ exhibit n-type, ambipolar, and p-type behaviors, respectively, while rGO-200 exhibits considerable increase in resistance upon exposure to hydrogen gas. rGO-200 exhibits very small decrease of resistance at room temperature and moderate increase of resistance at elevated temperatures upon exposure to hydrogen gas, while rGO-350 exhibits considerable decrease of resistance at room temperature upon exposure to hydrogen gas. These results indicate that the reduction temperature affects the distribution of density of states (DOS) in the band gap as well as the band gap size. The graphene oxide and the reduced products at low temperature show good sensitivity to hydrogen gas. With the increasing reduction temperature, the sensitivity fades while the response time and recovery time increases. The gas sensor exhibits high sensitivity (88.56%) and short response time (30 s) when exposed to the 10-4 hydrogen gas at room temperature.
-
Keywords:
- reduction temperature /
- graphene oxide /
- room temperature /
- hydrogen gas sensing
[1] Wada K, Egashira M 2000 Sens. Actuators B 62 211
[2] Park S J, Park J, Lee H Y, Moon S E, Park K H, Kim J, Maeng S, Udrea F, Milne W I, Kim G T 2010 J. Nanosci. Nanotechno. 10 3385
[3] Moon S E, Lee H Y, Park J, Lee J W, Choi N J, Park S J, Kwak J H, Park K H, Kim J, Cho G H, Lee T H, Maeng S, Udrea F, Milne W I 2010 J. Nanosci. Nanotechno. 10 3189
[4] Miyazaki H, Hyodo T, Shimizu Y, Egashira M 2005 Sens. Actuators B 108 467
[5] Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 65 248103]
[6] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652
[7] Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Seo D K, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuators B. 166-167 172
[8] Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Krl P, Salehi-Khojin A 2014 Nat. Commun. 5 4911
[9] Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29
[10] Guo L, Jiang H B, Shao R Q, Zhang Y L, Xie S Y, Wang J N, Li X B, Jiang F, Chen Q D, Zhang T, Sun H B 2012 Carbon. 50 1667
[11] Peng Y, Li J H 2013 Front. Environ. Sci. Eng. 7 403
[12] You R C, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon. 91 178
[13] Chu B H, Lo C F, Nicolosi J, Chang C Y, Chena V, Strupinskic W, Peartonb S J, Rena F 2011 Sens. Actuators B. 157 500
[14] Pandey P A, Wilson N R, Covington J A 2013 Sens. Actuators B. 183 478
[15] Anand K, Singh O, Singh M P, Kaur J, Singh R C 2014 Sens. Actuators B 195 409
[16] Hou R N, Peng T J, Sun H J 2015 J. Funct. Mater. 46 16079 (in Chinese) [侯若男, 彭同江, 孙红娟 2015 功能材料 46 16079]
[17] Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426
[18] Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 19351
[19] Yang Y H, Sun H J, Peng T J, Huang Q 2011 Acta Phys.-Chim. Sin. 27 736 (in Chinese) [杨永辉, 孙红娟, 彭同江, 黄桥 2011 物理化学学报 27 736]
[20] Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095
[21] Wang J D, Peng T J, Sun H J 2014 Acta Phys.-Chim. Sin. 30 2077 (in Chinese) [汪建德, 彭同江, 孙红娟 2014 物理化学学报 30 2077]
[22] Ferrari A C 2007 Solid State Commun. 143 47
[23] Chen J G, Peng T J, Sun H J 2014 J. Inorg. Chem. 30 779 (in Chinese) [陈军刚, 彭同江, 孙红娟 2014 无机化学学报 30 779]
[24] Bi H, Yin K, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M 2013 Sci Rep. 3 2714
[25] Rimeika R, Barkauskas J, Čiplys D 2011 Appl Phys Lett. 99 051915
[26] Shang D, Lin L B, He J 2005 J. Sichuan University 42 523 (in Chinese) [尚东, 林理彬, 何捷 2005 四川大学学报(自然科学版) 42 523]
[27] Hou R N, Peng T J, Sun H J 2014 J. Synthe. Cry. 43 2656 (in Chinese) [侯若男, 彭同江, 孙红娟 2014 人工晶体学报 43 2656]
[28] Wang J, Kwak Y, Lee I Y, Maeng S, Kim G H 2012 Carbon 50 4061
[29] Xu Z, Xue K 2010 Nanotechnology 21 19
[30] Boukhvalov D W, Katsnelson M I 2008 J. Am. Chem. Soc. 130 10697
[31] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504
-
[1] Wada K, Egashira M 2000 Sens. Actuators B 62 211
[2] Park S J, Park J, Lee H Y, Moon S E, Park K H, Kim J, Maeng S, Udrea F, Milne W I, Kim G T 2010 J. Nanosci. Nanotechno. 10 3385
[3] Moon S E, Lee H Y, Park J, Lee J W, Choi N J, Park S J, Kwak J H, Park K H, Kim J, Cho G H, Lee T H, Maeng S, Udrea F, Milne W I 2010 J. Nanosci. Nanotechno. 10 3189
[4] Miyazaki H, Hyodo T, Shimizu Y, Egashira M 2005 Sens. Actuators B 108 467
[5] Yu Z, Dang Z, Ke X Z, Cui Z 2016 Acta Phys. Sin. 65 248103 (in Chinese) [禹忠, 党忠, 柯熙政, 崔真 2016 65 248103]
[6] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652
[7] Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Seo D K, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuators B. 166-167 172
[8] Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Krl P, Salehi-Khojin A 2014 Nat. Commun. 5 4911
[9] Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29
[10] Guo L, Jiang H B, Shao R Q, Zhang Y L, Xie S Y, Wang J N, Li X B, Jiang F, Chen Q D, Zhang T, Sun H B 2012 Carbon. 50 1667
[11] Peng Y, Li J H 2013 Front. Environ. Sci. Eng. 7 403
[12] You R C, Yoon Y G, Choi K S, Kang J H, Shim Y S, Kim Y H, Chang H J, Lee J H, Park C R, Kim S Y, Jang H W 2015 Carbon. 91 178
[13] Chu B H, Lo C F, Nicolosi J, Chang C Y, Chena V, Strupinskic W, Peartonb S J, Rena F 2011 Sens. Actuators B. 157 500
[14] Pandey P A, Wilson N R, Covington J A 2013 Sens. Actuators B. 183 478
[15] Anand K, Singh O, Singh M P, Kaur J, Singh R C 2014 Sens. Actuators B 195 409
[16] Hou R N, Peng T J, Sun H J 2015 J. Funct. Mater. 46 16079 (in Chinese) [侯若男, 彭同江, 孙红娟 2015 功能材料 46 16079]
[17] Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426
[18] Lu G, Ocola L E, Chen J 2009 Nanotechnology 20 19351
[19] Yang Y H, Sun H J, Peng T J, Huang Q 2011 Acta Phys.-Chim. Sin. 27 736 (in Chinese) [杨永辉, 孙红娟, 彭同江, 黄桥 2011 物理化学学报 27 736]
[20] Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095
[21] Wang J D, Peng T J, Sun H J 2014 Acta Phys.-Chim. Sin. 30 2077 (in Chinese) [汪建德, 彭同江, 孙红娟 2014 物理化学学报 30 2077]
[22] Ferrari A C 2007 Solid State Commun. 143 47
[23] Chen J G, Peng T J, Sun H J 2014 J. Inorg. Chem. 30 779 (in Chinese) [陈军刚, 彭同江, 孙红娟 2014 无机化学学报 30 779]
[24] Bi H, Yin K, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M 2013 Sci Rep. 3 2714
[25] Rimeika R, Barkauskas J, Čiplys D 2011 Appl Phys Lett. 99 051915
[26] Shang D, Lin L B, He J 2005 J. Sichuan University 42 523 (in Chinese) [尚东, 林理彬, 何捷 2005 四川大学学报(自然科学版) 42 523]
[27] Hou R N, Peng T J, Sun H J 2014 J. Synthe. Cry. 43 2656 (in Chinese) [侯若男, 彭同江, 孙红娟 2014 人工晶体学报 43 2656]
[28] Wang J, Kwak Y, Lee I Y, Maeng S, Kim G H 2012 Carbon 50 4061
[29] Xu Z, Xue K 2010 Nanotechnology 21 19
[30] Boukhvalov D W, Katsnelson M I 2008 J. Am. Chem. Soc. 130 10697
[31] Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y 2009 Nanotechnology 20 185504
Catalog
Metrics
- Abstract views: 10935
- PDF Downloads: 701
- Cited By: 0