-
Dye pollution, one of the most serious pollutions in water, remains a challenging issue in environmental engineering. Many strategies including membrane separation, chemical oxidation, electrolysis, adsorption, etc., have been adopted to remove the dyes from water. Compared with other methods, adsorption has its own unique advantages such as low cost, low energy consumption and high efficiency. However, commercial adsorbents have low adsorption capacities and separation of absorbents/water, which hinders their practical applications. In this paper, functional tissues based on graphene oxide are fabricated through a simple immersion method. The structure, morphology and adsorption ability for each of these functional tissues are characterized and analyzed by scanning electron microscopy, Raman spectroscopy, thermal gravity analysis and UV-Vis spectrophotometer. The combination of commercial tissue and graphene oxide can solve the aforementioned problems such as low adsorption capacity, hard separation of adsorbent from water. on the one hand, abundant oxygen-containing functional groups and defects existing in graphene oxide sheets can be used as active adsorption sites, which endows the functional tissue with high adsorption capacity; On the other hand, the crosslinking of commercial tissue and graphene oxide through hydrogen bonding enables the functional tissue to be completely recycled from water after adsorption, which can avoid the secondary pollution caused by adsorbents such as pure graphene oxide. Batch tests are conducted to investigate the adsorption performance, e.g. the influences of adsorption time, initial concentration of dyes, adsorbent amount, and temperature on the adsorption performance. The results suggest that functional tissue has excellent performance for the removal of methylene blue and rhodamine B. Giving that the initial concentrations of methylene blue and rhodamine B are 40 mgL-1 and 30 mgL-1 respectively, the adsorption capacities are 54.84 mgg-1 and 21.74 mgg-1, respectively. It is noteworthy that graphene oxide sheets play a critical role in adsorbing the dyes. The adsorption capacity of functional tissue based on graphene oxide for rhodamine B totally results from graphene oxide component. Calculating the graphene oxide loading on the tissue, the adsorption capacity for rhodamine B reaches 183 mgg-1 at initial concentration of 30 mgL-1. Meanwhile, the adsorbance quantities of the functional tissue for the two dyes increase with adsorption time, initial concentration, adsorbent dosage, and temperature. Kinetic analysis reveals that the adsorption processes for methylene blue and rhodamine B are well-matched with the pseudo-second-order kinetic model, indicating the dominance of chemical adsorption in the whole adsorption process. The thermodynamic parameters indicate that the adsorption is spontaneous and endothermic in nature. In summary, a facile, inexpensive, and eco-friendly synthesis method is developed to fabricate the functional tissues based on graphene oxide. The functional tissues have high adsorption capacities for dyes. The combination of commercial tissue and graphene oxide could be explored as a new adsorbent for removing toxic organic dye pollutants from aqueous environment.
-
Keywords:
- adsorption /
- separation /
- graphene oxide /
- kinetic model
[1] Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097
[2] Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108
[3] Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141
[4] Yu S C, Liu M H, Ma M, Qi M, L Z H, Gao C J 2010 J. Membr. Sci. 350 83
[5] Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95
[6] Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489
[7] Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350
[8] Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065
[9] Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971
[10] Namvari M, Namazi H 2014 Polym. Int. 63 1881
[11] Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243-254 (in Chinese) [黄跃华, 许铁夫, 杨丽英 2013 水处理技术(第一版)(郑州: 黄河水利出版社) 第243-254页]
[12] Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境科技 28 68]
[13] Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J.Chem. 39 2908
[14] Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol. 49 67
[15] Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421
[16] Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰州: 兰州大学)]
[17] Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展2013 硕士学位论文 (开封: 河南大学)]
[18] Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256
[19] Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915
[20] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
[21] Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356
[22] Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press ) pp25-28 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011石墨烯: 结构、制备方法与性能表征(第一版)(北京: 清华大学出版社) 第25-28页]
[23] Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821
[24] Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]
[25] Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]
[26] Ai L H, Jiang J 2012 Chem. Eng. J. 192 156
[27] Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 Appl. Surf. Sci. 314 746
[28] Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922
[29] Aksu Z 2001 Biochem. Eng. J. 7 79
[30] Ho Y S, Mckay G 1999 Process Biochem. 34 451
[31] Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]
-
[1] Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097
[2] Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108
[3] Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141
[4] Yu S C, Liu M H, Ma M, Qi M, L Z H, Gao C J 2010 J. Membr. Sci. 350 83
[5] Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95
[6] Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489
[7] Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350
[8] Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065
[9] Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971
[10] Namvari M, Namazi H 2014 Polym. Int. 63 1881
[11] Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243-254 (in Chinese) [黄跃华, 许铁夫, 杨丽英 2013 水处理技术(第一版)(郑州: 黄河水利出版社) 第243-254页]
[12] Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境科技 28 68]
[13] Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J.Chem. 39 2908
[14] Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol. 49 67
[15] Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421
[16] Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰州: 兰州大学)]
[17] Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展2013 硕士学位论文 (开封: 河南大学)]
[18] Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256
[19] Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915
[20] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
[21] Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356
[22] Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press ) pp25-28 (in Chinese) [朱宏伟, 徐志平, 谢丹 2011石墨烯: 结构、制备方法与性能表征(第一版)(北京: 清华大学出版社) 第25-28页]
[23] Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821
[24] Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]
[25] Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]
[26] Ai L H, Jiang J 2012 Chem. Eng. J. 192 156
[27] Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 Appl. Surf. Sci. 314 746
[28] Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922
[29] Aksu Z 2001 Biochem. Eng. J. 7 79
[30] Ho Y S, Mckay G 1999 Process Biochem. 34 451
[31] Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]
Catalog
Metrics
- Abstract views: 7153
- PDF Downloads: 398
- Cited By: 0