Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics

Ma Chao Min Dao-Min Li Sheng-Tao Zheng Xu Li Xi-Yu Min Chao Zhan Hai-Xia

Citation:

Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics

Ma Chao, Min Dao-Min, Li Sheng-Tao, Zheng Xu, Li Xi-Yu, Min Chao, Zhan Hai-Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Polypropylene (PP) is widely used as capacitor films due to its better dielectric, mechanical, and thermal performance. In order to reduce the cost and size of capacitor, high energy density for PP dielectric is pursued. Since energy density is in quadratic proportion to direct current (dc) breakdown strength for linear dielectric, the enhancement of dc breakdown strength for PP dielectric is a primary choice to improve the energy density. Considering that the incorporation of nano-Al2O3 is an effective method to improve the dc breakdown strength for polymer, it is required to study the dc breakdown strength of PP/Al2O3 nanodielectric. In order to explore the breakdown mechanism, PP/Al2O3 nanodielectrics with different nano-particle contents are prepared by melt blending, and the samples are prepared by hot pressing. Their microstructures are observed by scanning electron microscopic. Isothermal surface potential decay, bulk resistivity, and dc breakdown strength of the samples are also measured. The experimental results show that the energy and density of deep traps, bulk resistivity, and dc breakdown strength first increase and then decrease with the increase in nano-Al2O3 content. The maximum values are obtained at a filer content value of 0.5 wt%, where dc breakdown strength can be increased by about 27%. Based on interface model, the relation between microstructure and trap is investigated. In view of space charge breakdown theory, the mechanism of dc breakdown for PP/Al2O3 nanodielectric is explored by trap parameters. It is indicated that the interface can provide more deep traps in PP/Al2O3 nanodielectric, while the decrease in the energy and density of deep traps can be attributed to the overlap of interfaces in electrical double layer. The increase in the energy and density of deep traps makes more carriers trapped near the injecting contact, thus reducing the effective field for carrier injection due to the internal field generated by the trapped carriers. The reduction of carrier injection can moderate the distortion of field in PP dielectric, consequently, resulting in enhancing the dc breakdown strength.
      Corresponding author: Min Dao-Min, forrestmin@xjtu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB251003), the Open Fund Project of State Key Laboratory of Power System of Tsinghua University, China (Grant No. SKLD16KZ04), the China Postdoctoral Science Foundation (Grant No. 2014M552449), the Fundamental Research Fund for the Central Universities, China (Grant No. xjj2014022), and the Program for New Teacher of Xi'an Jiaotong University, China (Grant No. DWSQc130000008).
    [1]

    Rabuffi M, Picci G 2002 IEEE Trans. Plas. Sci. 30 1939

    [2]

    Li H, Wang B W, Li Z W, Liu D, Lin F C, Dai L, Zhang Q, Chen Y H 2013 Rev. Sci. Instrum. 84 104707

    [3]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334

    [4]

    Wang Q, Zhu L 2011 J. Polym. Sci. Part B: Polym. Phys. 49 1421

    [5]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y, Wang H 2015 Adv. Mater. 27 6658

    [6]

    Kolesov S N 1980 IEEE Trans. Electr. Insul. 15 382

    [7]

    Gao L Y, Tu D M, Zhou S C, Zhang Z L 1990 IEEE Trans. Electr. Insul. 25 535

    [8]

    Yuan X P, Chung T C M 2011 Appl. Phys. Lett. 98 062901

    [9]

    Tian F Q, Yang C, He L J, Han B, Wang Y, Lei Q Q 2011 Trans. China Electrotech. Soc. 26 1 (in Chinese) [田付强, 杨春, 何丽娟, 韩柏, 王毅, 雷清泉 2011 电工技术学报 26 1]

    [10]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202

    [11]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Electr. Insul. 12 669

    [12]

    Raetzke S, Kindersberger J 2010 IEEE Trans. Electr. Insul. 17 607

    [13]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Electr. Insul. 18 1535

    [14]

    Wang F P, Xia Z F, Zhang X Q, Huang J F, Shen J 2007 Acta Phys. Sin. 56 6061 (in Chinese) [王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈军 2007 56 6061]

    [15]

    Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin. 64 237702 (in Chinese) [陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 64 237702]

    [16]

    Gao J G, Hu H T, Zheng J, Yu L, Zhang X H 2010 Insul. Mater. 43 47 (in Chinese) [高俊国, 胡海涛, 郑杰, 俞利, 张晓虹 2010 绝缘材料 43 47]

    [17]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 63 177701]

    [18]

    Takala M, Ranta H, Nevalainen P, Pakonen P, Pelto J, Karttunen M, Virtanen S, Koivu V, Pettersson M, Sonerud B, Kannus K 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1259

    [19]

    Virtanen S, Ranta H, Ahonen S, Karttunen M, Pelto J, Kannus K, Pettersson M 2014 J. Appl. Polymer Sci. 131 39504

    [20]

    Rytluoto I, Lahti K, Karttunen M, Koponen M, Virtanen S, Pettersson M 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2196

    [21]

    Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2777

    [22]

    Kozako M, Yamano S, Kido R, Ohki Y, Kohtoh M, Okabe S, Tanaka T 2005 Proceedings of 2005 International Symposium on Electrical Insulating Materials Kitakyushu, Japan, June 5-9, 2005 p231

    [23]

    Wang W W 2015 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [王威望 2015 博士学位论文 (西安: 西安交通大学)]

    [24]

    Li J Y, Zhou F S, Min D M, Li S T, Xia R 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1723

    [25]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego, California: Elsevier) pp327-514

    [26]

    Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: The Institution of Engineering and Technology) pp217-237

    [27]

    Matsui K, Tanaka Y, Takada T, Fukao T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 406

    [28]

    Ho J, Jow T R 2012 IEEE Trans. Dielectr. Elect. Insul. 19 990

    [29]

    Ikezaki K, Kaneko T, Sakakibara T 1981 Jpn. J. Appl. Phys. 20 609

    [30]

    Li H, Li Z W, Xu Z J, Lin F C, Wang B W, Li H Y, Zhang Q, Wang W J, Huang X 2014 IEEE Trans. Plasm. Sci. 42 3585

    [31]

    Liu C D, Zheng F H, An Z L, Zhang Y W 2013 J. Hubei Univ. (Nat. Sci.) 35 320 (in Chinese) [刘川东, 郑飞虎, 安振连, 张冶文 2013 湖北大学学报 (自然科学版) 35 320]

  • [1]

    Rabuffi M, Picci G 2002 IEEE Trans. Plas. Sci. 30 1939

    [2]

    Li H, Wang B W, Li Z W, Liu D, Lin F C, Dai L, Zhang Q, Chen Y H 2013 Rev. Sci. Instrum. 84 104707

    [3]

    Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334

    [4]

    Wang Q, Zhu L 2011 J. Polym. Sci. Part B: Polym. Phys. 49 1421

    [5]

    Wang Y F, Cui J, Yuan Q B, Niu Y J, Bai Y, Wang H 2015 Adv. Mater. 27 6658

    [6]

    Kolesov S N 1980 IEEE Trans. Electr. Insul. 15 382

    [7]

    Gao L Y, Tu D M, Zhou S C, Zhang Z L 1990 IEEE Trans. Electr. Insul. 25 535

    [8]

    Yuan X P, Chung T C M 2011 Appl. Phys. Lett. 98 062901

    [9]

    Tian F Q, Yang C, He L J, Han B, Wang Y, Lei Q Q 2011 Trans. China Electrotech. Soc. 26 1 (in Chinese) [田付强, 杨春, 何丽娟, 韩柏, 王毅, 雷清泉 2011 电工技术学报 26 1]

    [10]

    Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202

    [11]

    Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Electr. Insul. 12 669

    [12]

    Raetzke S, Kindersberger J 2010 IEEE Trans. Electr. Insul. 17 607

    [13]

    Li S T, Yin G L, Bai S N, Li J Y 2011 IEEE Trans. Electr. Insul. 18 1535

    [14]

    Wang F P, Xia Z F, Zhang X Q, Huang J F, Shen J 2007 Acta Phys. Sin. 56 6061 (in Chinese) [王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈军 2007 56 6061]

    [15]

    Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin. 64 237702 (in Chinese) [陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 64 237702]

    [16]

    Gao J G, Hu H T, Zheng J, Yu L, Zhang X H 2010 Insul. Mater. 43 47 (in Chinese) [高俊国, 胡海涛, 郑杰, 俞利, 张晓虹 2010 绝缘材料 43 47]

    [17]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 63 177701]

    [18]

    Takala M, Ranta H, Nevalainen P, Pakonen P, Pelto J, Karttunen M, Virtanen S, Koivu V, Pettersson M, Sonerud B, Kannus K 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1259

    [19]

    Virtanen S, Ranta H, Ahonen S, Karttunen M, Pelto J, Kannus K, Pettersson M 2014 J. Appl. Polymer Sci. 131 39504

    [20]

    Rytluoto I, Lahti K, Karttunen M, Koponen M, Virtanen S, Pettersson M 2015 IEEE Trans. Dielectr. Electr. Insul. 22 2196

    [21]

    Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2777

    [22]

    Kozako M, Yamano S, Kido R, Ohki Y, Kohtoh M, Okabe S, Tanaka T 2005 Proceedings of 2005 International Symposium on Electrical Insulating Materials Kitakyushu, Japan, June 5-9, 2005 p231

    [23]

    Wang W W 2015 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [王威望 2015 博士学位论文 (西安: 西安交通大学)]

    [24]

    Li J Y, Zhou F S, Min D M, Li S T, Xia R 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1723

    [25]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego, California: Elsevier) pp327-514

    [26]

    Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: The Institution of Engineering and Technology) pp217-237

    [27]

    Matsui K, Tanaka Y, Takada T, Fukao T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 406

    [28]

    Ho J, Jow T R 2012 IEEE Trans. Dielectr. Elect. Insul. 19 990

    [29]

    Ikezaki K, Kaneko T, Sakakibara T 1981 Jpn. J. Appl. Phys. 20 609

    [30]

    Li H, Li Z W, Xu Z J, Lin F C, Wang B W, Li H Y, Zhang Q, Wang W J, Huang X 2014 IEEE Trans. Plasm. Sci. 42 3585

    [31]

    Liu C D, Zheng F H, An Z L, Zhang Y W 2013 J. Hubei Univ. (Nat. Sci.) 35 320 (in Chinese) [刘川东, 郑飞虎, 安振连, 张冶文 2013 湖北大学学报 (自然科学版) 35 320]

  • [1] Song Xiao-Fan, Min Dao-Min, Gao Zi-Wei, Wang Po-Xin, Hao Yu-Tao, Gao Jing-Hui, Zhong Li-Sheng. Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric. Acta Physica Sinica, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [2] Yu Bao-Qing, Xia Bing, Yang Xiao-Yan, Wan Bao-Quan, Zha Jun-Wei. Electric field regulation of polypropylene insulation for high voltage DC cables. Acta Physica Sinica, 2023, 72(6): 068402. doi: 10.7498/aps.72.20222320
    [3] Li Ya-Sha, Xia Yu, Liu Shi-Chong, Qu Cong. Surface discharge of bulk materials investigated from change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2022, 71(5): 052101. doi: 10.7498/aps.71.20211611
    [4] Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [5] Surface discharge of bulk materials from the change of charge trap characteristics of polyimide single molecular chain. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211611
    [6] Nie Yong-Jie, Zhao Xian-Ping, Li Sheng-Tao. Influence of trap characteristics on DC surface flashover performance of low density polyethylene in vacuum. Acta Physica Sinica, 2019, 68(22): 227201. doi: 10.7498/aps.68.20190741
    [7] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [8] Tang Hai-Tong, Ao Yu-Hui, Wang Cong, Zhao Rui-Xue, Gao Zhong-Min, Meng Fan-Ling. Nanopore change law and mechanism of polyacrylonitrile based carbon fiber precursor in spinning process. Acta Physica Sinica, 2015, 64(4): 046101. doi: 10.7498/aps.64.046101
    [9] Zhang Xin-Wu, Zhang Xiao-Qing. Piezoelectric and acoustic behavior of polypropylene piezoelectret films. Acta Physica Sinica, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [10] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [11] Zhu Zhi-En, Zhang Ye-Wen, An Zhen-Lian, Zheng Fei-Hu. Experimental study on the distribution of trap levels in dielectric by photo-stimulated discharge. Acta Physica Sinica, 2010, 59(7): 5067-5072. doi: 10.7498/aps.59.5067
    [12] Xie Wei, Wang Yin-Hai, Hu Yi-Hua, Luo Li, Wu Hao-Yi, Deng Liu-Yong. Preparation and red long-afterglow luminescence of Y2O3:Eu, Dy. Acta Physica Sinica, 2010, 59(5): 3344-3349. doi: 10.7498/aps.59.3344
    [13] Li Sheng-Tao, Huang Qi-Feng, Sun Jian, Zhang Tuo, Li Jian-Ying. Influence of aggregation structure and traps on surface flashover of XLPE in vacuum. Acta Physica Sinica, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [14] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [15] Zhao Min, An Zhen-Lian, Yao Jun-Lan, Xie Chen, Xia Zhong-Fu. Trap capture properties of space charge and void breakdown charge in a cellular polypropylene electret film. Acta Physica Sinica, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [16] Peng Shao-Quan, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Chen Wei-Hua. Radiation degradation model of metal-oxide-semiconductor field effect transistor based on pre-irradiation 1/f noise. Acta Physica Sinica, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [17] Hu Jin, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, Zhou Jiang. Noise as a representation for reliability of light emitting diode. Acta Physica Sinica, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [18] LIU BO, SHI CHAO-SHU, ZHOU DONG-FANG, QI ZE-MING, HU GUAN-QIN, TANG HONG-GAO. INFLUENCE OF Gd3+ AND Y3+-DOPING ON LOW TEMPERATURE THERMOLUMINESCENCE OF Pb WO_4. Acta Physica Sinica, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
    [19] LI ZHENG-YING. A SURVEY ON THE LIMITING BREAKDOWN STRENGTH AND ELECTRON ATTACHMENT RATE CONSTANTS IN ELECTRONEGATIVE GAS MIXTURES. Acta Physica Sinica, 1990, 39(9): 1400-1406. doi: 10.7498/aps.39.1400
    [20] Feng Ruo. ULTRSONIC INVESTIGATION OF THE AQUEOUS SOLUTION OF POLYACRYLAMIDE. Acta Physica Sinica, 1980, 29(7): 940-944. doi: 10.7498/aps.29.940
Metrics
  • Abstract views:  9061
  • PDF Downloads:  591
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2016
  • Accepted Date:  10 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map