-
Epoxy resin nanocomposites have excellent properties such as the suppression of space charge accumulation, high resistivity, and high electrical breakdown strength, which play an important role in developing the direct current power equipment. However, the influencing mechanisms of filler content on trap, conductivity, and space charge of nanocomposites have not been clear to date. In the present paper, a method to calculate the densities of shallow traps and deep traps in interaction zones is proposed based on the multi-region structure model of interaction zones, and the dependence of shallow traps and deep traps on filler content is obtained. It is found that the shallow trap density increases with the increase of filler content, while the deep trap density first increases and then decreases with increasing the filler content, which is caused by the overlap of interaction zones. Then, the relation between the shallow trap controlled carrier mobility and the filler content is investigated. With the filler content increasing, the density of shallow traps increases and their mean distance decreases, leading to an increase in the shallow trap controlled carrier mobility. Considering the charge injection from cathode into dielectrics, carrier hopping in shallow traps, charge trapping into and detrapping from deep traps, a unipolar charge transport model is established to study the conductivity and distributions of space charges and electric field in epoxy resin nanocomposites. At relatively low filler content, the charge transport is dominated by deep traps in interaction zones and the conductivity decreases with the increase of filler content. However, the charge transport is determined by shallow traps at relatively high filler content and the conductivity increases.
-
Keywords:
- epoxy resin nanocomposite /
- interaction zone /
- trap /
- space charge
[1] Nelson J K 2010 Dielectric Polymer Nanocomposites (New York: Springer) pp1-27
[2] Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q Q 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1523
[3] Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914
[4] Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669
[5] Huang X Y, Zhi C Y 2016 Polymer Nanocomposites: Electrical and Thermal Properties (Switzerland: Springer) pp3-77
[6] Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Eng. 38 2455 (in Chinese) [罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏 2012 高电压技术 38 2455]
[7] Zhang L, Zhou Y X, Zhang Y X, Wang Y S, Guo D W, Chen Z Z 2014 High Voltage Eng. 40 2653 (in Chinese) [张灵, 周远翔, 张云霄, 王云杉, 郭大卫, 陈铮铮 2014 高电压技术 40 2653]
[8] Wu J D, Yin Y, Lan L, Wang Q H, Li X G, Xiao D M 2012 Proc. CSEE 32 177 (in Chinese) [吴建东, 尹毅, 兰莉, 王俏华, 李旭光, 肖登明 2012 中国电机工程学报 32 177]
[9] Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337
[10] Li S, Yin G, Bai S, Li J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535
[11] Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33
[12] Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797
[13] Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202
[14] Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739
[15] Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3476
[16] Henk P O, Kortsen T W, Kvarts T 1999 High Perform. Polym. 11 281
[17] Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334
[18] Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2777
[19] Ieda M 1984 IEEE Trans. Electr. Insul. 19 162
[20] Teyssdre G, Laurent C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 857
[21] Mott N F, Davis E A 1979 Electronic Processes in Non-crystalline Meterials (Oxford: Clarendon Press) p60
[22] Min D M, Wang W W, Li S T 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1483
[23] Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: Peter Peregrinus Ltd) p214
[24] Li X T, Masuzaki Y, Tian F Q, Ohki Y 2015 IEEJ Trans. Fundament. Mater. 135 88
[25] Min D M, Li S T, Ohki Y 2016 IEEE Trans. Dielectr. Electr. Insul. 23 507
[26] Laurent C, Teyssedre G, Le Roy S, Baudoin F 2013 IEEE Trans. Dielectr. Electr. Insul. 20 357
[27] Chen G, Zhao J, Li S, Zhong L 2012 Appl. Phys. Lett. 100 222904
[28] Dissado L A, Griseri V, Peasgood W, Cooper E S, Fukunaga K, Fothergill J C 2006 IEEE Trans. Dielectr. Electr. Insul. 13 903
[29] Nelson J K, Fothergill J C 2004 Nanotechnology 15 586
[30] Hajiyiannis A, Chen G, Zhang C, Stevens G 2008 Annual Report Conference on Electrical Insulation Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p714
[31] Takada T, Hayase Y, Tanaka Y, Okamoto T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152
-
[1] Nelson J K 2010 Dielectric Polymer Nanocomposites (New York: Springer) pp1-27
[2] Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q Q 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1523
[3] Tanaka T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 914
[4] Tanaka T, Kozako M, Fuse N, Ohki Y 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669
[5] Huang X Y, Zhi C Y 2016 Polymer Nanocomposites: Electrical and Thermal Properties (Switzerland: Springer) pp3-77
[6] Luo Y, Wu G N, Peng J, Zhang Y Q, Xu H H, Wang P 2012 High Voltage Eng. 38 2455 (in Chinese) [罗杨, 吴广宁, 彭佳, 张依强, 徐慧慧, 王鹏 2012 高电压技术 38 2455]
[7] Zhang L, Zhou Y X, Zhang Y X, Wang Y S, Guo D W, Chen Z Z 2014 High Voltage Eng. 40 2653 (in Chinese) [张灵, 周远翔, 张云霄, 王云杉, 郭大卫, 陈铮铮 2014 高电压技术 40 2653]
[8] Wu J D, Yin Y, Lan L, Wang Q H, Li X G, Xiao D M 2012 Proc. CSEE 32 177 (in Chinese) [吴建东, 尹毅, 兰莉, 王俏华, 李旭光, 肖登明 2012 中国电机工程学报 32 177]
[9] Zha J W, Wu Y H, Wang S J, Wu D H, Yan H D, Dang Z M 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2337
[10] Li S, Yin G, Bai S, Li J 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535
[11] Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekiguchi Y, Murata Y 2008 IEEE Trans. Dielectr. Electr. Insul. 15 33
[12] Cao Y, Irwin P C, Younsi K 2004 IEEE Trans. Dielectr. Electr. Insul. 11 797
[13] Lewis T J 2005 J. Phys. D: Appl. Phys. 38 202
[14] Lewis T J 2004 IEEE Trans. Dielectr. Electr. Insul. 11 739
[15] Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3476
[16] Henk P O, Kortsen T W, Kvarts T 1999 High Perform. Polym. 11 281
[17] Dang Z M, Yuan J K, Yao S H, Liao R J 2013 Adv. Mater. 25 6334
[18] Li S T, Min D M, Wang W W, Chen G 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2777
[19] Ieda M 1984 IEEE Trans. Electr. Insul. 19 162
[20] Teyssdre G, Laurent C 2005 IEEE Trans. Dielectr. Electr. Insul. 12 857
[21] Mott N F, Davis E A 1979 Electronic Processes in Non-crystalline Meterials (Oxford: Clarendon Press) p60
[22] Min D M, Wang W W, Li S T 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1483
[23] Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: Peter Peregrinus Ltd) p214
[24] Li X T, Masuzaki Y, Tian F Q, Ohki Y 2015 IEEJ Trans. Fundament. Mater. 135 88
[25] Min D M, Li S T, Ohki Y 2016 IEEE Trans. Dielectr. Electr. Insul. 23 507
[26] Laurent C, Teyssedre G, Le Roy S, Baudoin F 2013 IEEE Trans. Dielectr. Electr. Insul. 20 357
[27] Chen G, Zhao J, Li S, Zhong L 2012 Appl. Phys. Lett. 100 222904
[28] Dissado L A, Griseri V, Peasgood W, Cooper E S, Fukunaga K, Fothergill J C 2006 IEEE Trans. Dielectr. Electr. Insul. 13 903
[29] Nelson J K, Fothergill J C 2004 Nanotechnology 15 586
[30] Hajiyiannis A, Chen G, Zhang C, Stevens G 2008 Annual Report Conference on Electrical Insulation Dielectric Phenomena Quebec, Canada, October 26-29, 2008 p714
[31] Takada T, Hayase Y, Tanaka Y, Okamoto T 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152
Catalog
Metrics
- Abstract views: 6919
- PDF Downloads: 328
- Cited By: 0