Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite

Xin Cheng-Zhou Ma Jian-Nan Ma Jing Nan Ce-Wen

Citation:

Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite

Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetoelectric (ME) composites have recently attracted much attention and triggered a great number of research activities, owing to their potential applications in sensors and transducers. Many researches have focused on the enhancement of ME coefficient by choosing suitable composite material and vibration mode based on the coupling between stress and strain. Besides normal stress, another vibration mode, shear mode, is further discussed as a potential high-frequency resonant device for a high frequency magnetic field detector, and it is useful to optimize the shear ME coefficient to broaden the application scope of the compositions. In this paper, an elasticity method is used to calculate ME coefficients of thickness shear mode LiNbO3/magnetostrictive laminated composites for various crystal orientations of LiNbO3, magnetostrictive materials and material sizes. The stretch-shear structure and shear-shear modes of the composite with considering the boundary condition are both discussed and further optimized. According to the structure design of stretch-shear mode composite from the literature, we design a new structure to achieve the uniform and pure shear ME effect, which changes the magnetostrictive phase on the bonding part into rigid material to avoid stretch deformation. We find that in the shear-shear ME composite, the structure should not move in the in-plane direction in order to realize the parallelogram deformation under shear stress, but should be free in the thickness direction to meet the change of thickness with shear deformation. For the stretch-shear mode Metglas/LiNbO3 [(xzlt) x/y], the shear ME coefficient E15 as a function of orientation of LiNbO3 shows that the maximum E15 is 235.1 mV/(cmOe) when x=0 and y=30. The results indicate that optimal shear ME coefficient is obtained at (xzt) 30 LiNbO3, resulting from the maximum shear piezoelectric coefficient dp15. By changing the material size in stretch-shear composite, the shear ME coefficient increases with the increase of thickness of magnetostrictive phase, because the stretch force increases with the increase of the cross-sectional area of magnetostrictive phase. The maximum values of E15 are, respectively, 24.13 V/(cmOe) in the stretch-shear mode Terfenol-D/LiNbO3 and 11.46 V/(cmOe) in the shear-shear mode Metglas/LiNbO3 by the optimization of material sizes. Experimental results are in accordance with calculation results. It is confirmed that LiNbO3 (xzt) 30 is the best choice for achieving the largest shear ME effect, and thicker Terfenol-D can help to achieve a larger ME coefficient in this stretch-shear composite. This work provides a design method to choose the structure and crystal orientation of shear LiNbO3-based ME laminated composite, which shows a prospect of applications in high-mechanical-quality factor Qm and high-frequency magnetic detectors with shear resonant devices.
      Corresponding author: Ma Jing, ma-jing@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51402164).
    [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Ma J, Shi Z, Lin Y H, Nan C W 2009 Acta Phys. Sin. 58 5852 (in Chinese) [马静, 施展, 林元华, 南策文 2009 58 5852]

    [4]

    Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese) [周剑平, 施展, 刘刚, 何泓材, 南策文 2006 55 3766]

    [5]

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766 (in Chinese) [施展, 南策文 2004 53 2766]

    [6]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [7]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [8]

    Bi K, Wang Y G, Pan D A, Wu W 2011 J. Mater. Res. 26 2707

    [9]

    Li L, Chen X M, Zhu H Y 2012 J. Alloys Compd. 526 116

    [10]

    Zeng L Y, Zhou M H, Bi K, Lei M 2016 J. Appl. Phys. 119 034102

    [11]

    Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2008 J. Am. Ceram. Soc. 91 351

    [12]

    Chashin D V, Fetisov Y K, Tafintseva E V, Srinivasan G 2008 Solid State Commun. 148 55

    [13]

    Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 60 097506]

    [14]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [15]

    Wang Y, Jiang Y J 2003 Opt. Mater. 23 403

    [16]

    Kuo H Y, Slinger A, Bhattacharya K 2010 Smart Mater. Struct. 19 125010

    [17]

    Ma J, Shi Z, Nan C W 2007 Adv. Mater. 19 2571

    [18]

    Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 60 057503]

    [19]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 54 3872]

    [20]

    Bichurin M I, Petrov R V, Petrov V M 2013 Appl. Phys. Lett. 103 092902

    [21]

    Wang Y J, Hasanyan D, Li J F, Viehland D, Luo H S 2012 Appl. Phys. Lett. 100 202903

    [22]

    Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J 2014 Sens. Actuator A: Phys. 214 149

    [23]

    Liu G X, Zhang C L, Dong S X 2014 J. Appl. Phys. 116 074104

    [24]

    Lu M C, Mei L, Jeong D Y, Xiang J, Xie H Q, Zhang Q M 2015 Appl. Phys. Lett. 106 112905

    [25]

    Meeks S W, Hill J C 1983 J. Appl. Phys. 54 6584

  • [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Ma J, Shi Z, Lin Y H, Nan C W 2009 Acta Phys. Sin. 58 5852 (in Chinese) [马静, 施展, 林元华, 南策文 2009 58 5852]

    [4]

    Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin. 55 3766 (in Chinese) [周剑平, 施展, 刘刚, 何泓材, 南策文 2006 55 3766]

    [5]

    Shi Z, Nan C W 2004 Acta Phys. Sin. 53 2766 (in Chinese) [施展, 南策文 2004 53 2766]

    [6]

    Jia Y M, Luo H S, Zhao X Y, Wang F F 2008 Adv. Mater. 20 4776

    [7]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [8]

    Bi K, Wang Y G, Pan D A, Wu W 2011 J. Mater. Res. 26 2707

    [9]

    Li L, Chen X M, Zhu H Y 2012 J. Alloys Compd. 526 116

    [10]

    Zeng L Y, Zhou M H, Bi K, Lei M 2016 J. Appl. Phys. 119 034102

    [11]

    Zhai J Y, Xing Z P, Dong S X, Li J F, Viehland D 2008 J. Am. Ceram. Soc. 91 351

    [12]

    Chashin D V, Fetisov Y K, Tafintseva E V, Srinivasan G 2008 Solid State Commun. 148 55

    [13]

    Wen Y M, Wang D, Li P, Chen L, Wu Z Y 2011 Acta Phys. Sin. 60 097506 (in Chinese) [文玉梅, 王东, 李平, 陈蕾, 吴治峄 2011 60 097506]

    [14]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [15]

    Wang Y, Jiang Y J 2003 Opt. Mater. 23 403

    [16]

    Kuo H Y, Slinger A, Bhattacharya K 2010 Smart Mater. Struct. 19 125010

    [17]

    Ma J, Shi Z, Nan C W 2007 Adv. Mater. 19 2571

    [18]

    Bi K, Ai Q W, Yang L, Wu W, Wang Y G 2011 Acta Phys. Sin. 60 057503 (in Chinese) [毕科, 艾迁伟, 杨路, 吴玮, 王寅岗 2011 60 057503]

    [19]

    Wan H, Xie L Q, Wu X Z, Liu X C 2005 Acta Phys. Sin. 54 3872 (in Chinese) [万红, 谢立强, 吴学忠, 刘希从 2005 54 3872]

    [20]

    Bichurin M I, Petrov R V, Petrov V M 2013 Appl. Phys. Lett. 103 092902

    [21]

    Wang Y J, Hasanyan D, Li J F, Viehland D, Luo H S 2012 Appl. Phys. Lett. 100 202903

    [22]

    Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J 2014 Sens. Actuator A: Phys. 214 149

    [23]

    Liu G X, Zhang C L, Dong S X 2014 J. Appl. Phys. 116 074104

    [24]

    Lu M C, Mei L, Jeong D Y, Xiang J, Xie H Q, Zhang Q M 2015 Appl. Phys. Lett. 106 112905

    [25]

    Meeks S W, Hill J C 1983 J. Appl. Phys. 54 6584

  • [1] Liu Li-Qiang, Su Wei-Lun, Liu Jun-Ming, Zou Yu, Hong Li-Hong, Li Zhi-Yuan. Design and angular robustness test of chirped periodically poled lithium niobate crystal for 1064 nm second-harmonic generation experiment. Acta Physica Sinica, 2024, 73(17): 174204. doi: 10.7498/aps.73.20240778
    [2] Yu Gui-Fang, Li Zhi-Hao, Xiao Tian-Qi, Feng Tian-Feng, Zhou Xiao-Qi. Mode-dispersion phase matching single photon source based on thin-film lithium niobate. Acta Physica Sinica, 2023, 72(15): 154204. doi: 10.7498/aps.72.20230743
    [3] Xiong Xiao, Cao Qi-Tao, Xiao Yun-Feng. Thin-film lithium niobate photonic integrated devices: Advances and oppotunities. Acta Physica Sinica, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [4] Li Ming-Zhou, Li Zhi-Yuan. Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation. Acta Physica Sinica, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [5] Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen. Magnetoelectric effect in stretch-shear mode self-biased LiNbO3 based composite with high-frequency resonant response. Acta Physica Sinica, 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [6] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [7] Shi Li-Hong, Yan Wen-Bo, Shen Xu-Nan, Chen Gui-Feng, Chen Hong-Jian, Qiao Hui-Bin, Jia Fang-Fang, Lin Ai-Diao. Composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate. Acta Physica Sinica, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [8] Shi Li-Hong, Yan Wen-Bo. Study on infrared absorption spectra of congruent lithium niobate crystals at low temperature. Acta Physica Sinica, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [9] Magneto-photorefractive effect in lithium niobate crystals. Acta Physica Sinica, 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [10] Yan Wei-Guo, Chen Yun-Lin, Wang Dong-Dong, Guo Juan, Zhang Guang-Yin. Research on the submicron domain inversion structure of MgO:LiNbO3. Acta Physica Sinica, 2006, 55(11): 5855-5858. doi: 10.7498/aps.55.5855
    [11] Yao Jiang-Hong, Chen Ya-Hui, Yan Bo-Xia, Deng Hao-Liang, Kong Yong-Fa, Chen Shao-Lin, Xu Jing-Jun, Zhang Guang-Yin. Submicron domain patterning in LiNbO3 doped MgO*. Acta Physica Sinica, 2004, 53(12): 4369-4372. doi: 10.7498/aps.53.4369
    [12] Gao Yuan-Mei, Liu Si-Min, Guo Ru, Huang Chun-Fu, Wang Da-Yun. Light coupling in Y-cut doped lithium niobate crystals. Acta Physica Sinica, 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [13] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [14] FENG SHAO-XIN, LI BAO-HUI, JIN QING-HUA, GUO ZHEN-YA, DING DA-TONG. DETERMINATION OF EMPIRICAL PARAMETERS OF INTER-IONIC POTENTIALS FOR LITHIUM NIOB ATE. Acta Physica Sinica, 2000, 49(12): 2433-2436. doi: 10.7498/aps.49.2433
    [15] WANG JIN, YANG KUN, JIN CHAN. A STUDY ON THE STRUCTURE OF THE CRYSTAL LiNbO3:MgO. Acta Physica Sinica, 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [16] LIU JIAN-JUN, ZHANG WAN-LIN, ZHANG GUANG-YIN. ANALYSIS OF DEFECT STRUCTURE IN Mg-DOPED LiNbO3 CRYSTAL. Acta Physica Sinica, 1996, 45(11): 1852-1858. doi: 10.7498/aps.45.1852
    [17] LIU JIN-SONG, LIANG CHANG-HONG, AN YU-YING, LI MING-HUA, JIN CHAN, XU YU-HENG, WU ZHONG-KANG. THE EXTRAORDINARY TEMPERATURE CHARA-CTERISTICS OF TWO-BEAM COUPLING IN THE Ce: Eu: LiNbO3 CRYSTAL AND STRUCTURE PHASE TRANSFORMATION. Acta Physica Sinica, 1994, 43(9): 1455-1459. doi: 10.7498/aps.43.1455
    [18] FENG XI-QI, YING JI-EENG, WANG JIN-CHANG, LIU JIAN-CHENG. THE OH ABSORPTION SPECTRUM As A PROBE FOR DEFECT STRUCTURE OF LiNbO3 CRYSTAL. Acta Physica Sinica, 1988, 37(12): 2062-2067. doi: 10.7498/aps.37.2062
    [19] FENG GUO-GUANG, YANG CUI-YING, ZHOU YU-QING, TANG DI-SHENG. STRUCTURAL ANALYSIS OF Li2O·14Nb2O5 BY COMBINED CONVERGENT-BEAM ELECTRON DIFFRACTION AND HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1984, 33(11): 1581-1585. doi: 10.7498/aps.33.1581
    [20] NIOBATES RESEARCH GROUP. SINGLE CRYSTAL GROWTH OF STRONTIUM SODIUM LITHIUM NIOBATE. Acta Physica Sinica, 1979, 28(2): 229-233. doi: 10.7498/aps.28.229
Metrics
  • Abstract views:  6573
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2016
  • Accepted Date:  21 December 2016
  • Published Online:  05 March 2017

/

返回文章
返回
Baidu
map