-
The high-Z material tungsten (W) is a promising candidate of the plasma facing components (PFCs) for the future tokamak reactors due to its high melting point (3683 K), low tritium retention and low sputtering yield. However, there are still many problems about W PFCs. One of them is the material melting under off-normal transient heat fluxesit is one of the most outstanding open questions associated with the use of W divertor targets in international thermonuclear experimental reactor (ITER). This requires us urgently to understand the W melting behavior under high power flux deposition condition. In this paper, a two-dimensional (2D) fluid dynamic model is employed by solving the liquid hydrodynamic Navier-Stokes equation together with the 2D heat conduction equation for studying the erosion of the divertor tungsten targets and its resulting topographical modification during a type I-like edge-localized mode (ELM) in ITER with a Gaussian power density profile heat load. In the present model, major interaction forces, including surface tension, pressure gradient and magnetic force responsible for melt layer motion, are taken into account. The simulation results are first benchmarked with the calculated results by other code to validate the present model and code. Simulations are carried out in a wide range of fusion plasma performance parameters, and the results indicate that the lifetime of W plate is determined mainly by the evolution of the melt layer. As a consequence of the melt layer motion, melted tungsten is flushed to the periphery, a rather deep erosion dent appears, and at the dent edges two humps of tungsten form during the ELM. The humps at both edges are almost at the same height. Calculated results show the topographical modification becomes noticeable when the W plate is exposed to a heat flux of 2000 MWm-2 for 0.8 ms (in the simulation, the parameter k=ə/əT is taken to be -9.010-5 Nm-1K-1, where is the surface tension coefficient and T is the temperature). The values of the humps are both about 2.1 m, and the surface roughness is about 1.1 m. The longer the duration of the ELM, the more rapidly the humps rise. The melt flow may account for the higher surface temperature at the pool periphery, and for the larger melt thickness. It is found that when the energy flux is under 3000 MWm-2 the surface tension is a major driving force for the motion of melt layer. Under the same heat flux, the bigger the k used in the simulation, the more severe the surface topography of the target becomes; while at the same k, the higher the heat flux, the more severe the surface topography of the target becomes. In addition, a modified numerical method algorithm for solving the governing equations is proposed.
-
Keywords:
- edge-localized modes /
- tungsten divertor plate /
- melting /
- flowing
[1] Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese)[徐伟, 万宝年, 谢纪康2003 52 1970]
[2] Coenen J W, Arnoux G, Bazylev B, Matthews G F, Autricque A, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Jachmich S, Komm M, Knaup M, Krieger K, Marsen S, Meigs A, Mertens P, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 Nucl. Fusion 55 023010
[3] Sergienko G, Bazylev B, Huber A, Kreter A, Litnovsky A, Rubel M, Philipps V, Pospieszczyk A, Mertens P, Samm U, Schweer B, Schmitz O, Tokar M, The TEXTOR Team 2007 J. Nucl. Mater. 363 96
[4] Sergienko G, Bazylev B, Hirai T 2007 Phy. Scr. T128 81
[5] Coenen J W, Arnoux G, Bazylev B, Matthews G F, Jachmich S, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Knaup M, Komm M, Krieger K, Marsen S, Meigs A, Mertens Ph, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 J. Nucl. Mater. 463 78
[6] Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin A, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M 2003 J. Nucl. Mater. 313 11
[7] Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523
[8] Raffray A R, Federici G 1997 J. Nucl. Mater. 244 85
[9] Federici G, Raffray A R 1997 J. Nucl. Mater. 244 101
[10] Hassanein A, Konkashbaev I 2000 Fusion Eng. Des. 51 681
[11] Sizyuk V, Hassanein A 2015 Phy. Plasmas 22 013301
[12] Litunovsky V N, Kuznetsov V E, Lyublin B V, Ovchinnikov I B, Titov V A, Hassanein A 2000 Fusion Eng. Des. 49 249
[13] Shi Y, Miloshevsky G, Hassanein A 2011 Fusion Eng. Des. 86 155
[14] Hassanein A, Konkashbaev I 2003 J. Nucl. Mater. 313 664
[15] Genco F, Hassanein A 2014 Laser Part. Beams 32 217
[16] Wurz H, Bazylev B, Landman I, Pestchanyi S, Gross S 2001 Fusion Eng. Des. 56 397
[17] Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69
[18] Coenen J W, Bazylev B, Brezinsek S 2011 J. Nucl. Mater. 415 S78
[19] Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 Fusion Eng. Des. 75 407
[20] Bazylev B N, Janeschitz G, Landman I S, Loarte A, Pestchanyi S E 2007 J. Nucl. Mater. 363 1011
[21] Igitkhanov Y, Bazylev B 2014 IEEE Trans. Plasma Sci. 42 2284
[22] Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)[黄艳, 孙继忠, 桑超峰, 丁芳, 王德真2014 63 035204]
[23] Huang Y, Sun J Z, Hu W P, Sang C F, Wang D Z 2016 Fusion Eng. Des. 102 28
[24] Miloshevsky G V, Hassanein 2010 Nucl. Fusion 50 115005
[25] Loarte A 2003 Plasma Phys. Control. Fusion 45 1549
[26] Hassanein A, Sizyuk T, Konkashbaev I 2009 J. Nucl. Mater. 390 777
[27] Jiang C B, Zhang Y L, Ding Z P 2007 Computational Fluid Mechanics (the first edition) (Beijing:China Power Press) p211(in Chinese)[江春波, 张永良, 丁则平2007计算流体力学(第一版)(北京:中国电力出版社)第211页]
[28] Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (2nd Ed.) (Oxford:Clarendon Press) pp89-91
[29] Behrisch R 2010 J. Synch. Investig. 4 549
[30] Semak V V, Damkroger B, Kempka S 1999 J. Phys. D:Appl. Phys. 32 1819
[31] Udaykumar H S, Shyy W 1995 Int. J. Heat Mass Transfer 38 2057
[32] Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 J. Nucl. Mater. 337 766
[33] Udaykumar H S, Shyy W, Rao M M 1996 Int. J. Numer. Methods Fluids 22 691
[34] Wurz H, Pestchanyi S, Bazylev B, Landman I, Kappler F 2001 J. Nucl. Mater. 290 1138
[35] Elsholz F, Scholl E, Scharfenorth C, Seewald G, Eichler H J, Rosenfeld A 2005 J. Appl. Phys. 98 103516
[36] Elsholz F, Scholl E, Rosenfeld A 2004 Appl. Phys. Lett. 84 4167
-
[1] Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese)[徐伟, 万宝年, 谢纪康2003 52 1970]
[2] Coenen J W, Arnoux G, Bazylev B, Matthews G F, Autricque A, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Jachmich S, Komm M, Knaup M, Krieger K, Marsen S, Meigs A, Mertens P, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 Nucl. Fusion 55 023010
[3] Sergienko G, Bazylev B, Huber A, Kreter A, Litnovsky A, Rubel M, Philipps V, Pospieszczyk A, Mertens P, Samm U, Schweer B, Schmitz O, Tokar M, The TEXTOR Team 2007 J. Nucl. Mater. 363 96
[4] Sergienko G, Bazylev B, Hirai T 2007 Phy. Scr. T128 81
[5] Coenen J W, Arnoux G, Bazylev B, Matthews G F, Jachmich S, Balboa I, Clever M, Dejarnac R, Coffey I, Corre Y, Devaux S, Frassinetti L, Gauthier E, Horacek J, Knaup M, Komm M, Krieger K, Marsen S, Meigs A, Mertens Ph, Pitts R A, Puetterich T, Rack M, Stamp M, Sergienko G, Tamain P, Thompson V, JET-EFDA Contributors 2015 J. Nucl. Mater. 463 78
[6] Federici G, Andrew P, Barabaschi P, Brooks J, Doerner R, Geier A, Herrmann A, Janeschitz G, Krieger K, Kukushkin A, Loarte A, Neu R, Saibene G, Shimada M, Strohmayer G, Sugihara M 2003 J. Nucl. Mater. 313 11
[7] Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523
[8] Raffray A R, Federici G 1997 J. Nucl. Mater. 244 85
[9] Federici G, Raffray A R 1997 J. Nucl. Mater. 244 101
[10] Hassanein A, Konkashbaev I 2000 Fusion Eng. Des. 51 681
[11] Sizyuk V, Hassanein A 2015 Phy. Plasmas 22 013301
[12] Litunovsky V N, Kuznetsov V E, Lyublin B V, Ovchinnikov I B, Titov V A, Hassanein A 2000 Fusion Eng. Des. 49 249
[13] Shi Y, Miloshevsky G, Hassanein A 2011 Fusion Eng. Des. 86 155
[14] Hassanein A, Konkashbaev I 2003 J. Nucl. Mater. 313 664
[15] Genco F, Hassanein A 2014 Laser Part. Beams 32 217
[16] Wurz H, Bazylev B, Landman I, Pestchanyi S, Gross S 2001 Fusion Eng. Des. 56 397
[17] Bazylev B, Wuerz H 2002 J. Nucl. Mater. 307 69
[18] Coenen J W, Bazylev B, Brezinsek S 2011 J. Nucl. Mater. 415 S78
[19] Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 Fusion Eng. Des. 75 407
[20] Bazylev B N, Janeschitz G, Landman I S, Loarte A, Pestchanyi S E 2007 J. Nucl. Mater. 363 1011
[21] Igitkhanov Y, Bazylev B 2014 IEEE Trans. Plasma Sci. 42 2284
[22] Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)[黄艳, 孙继忠, 桑超峰, 丁芳, 王德真2014 63 035204]
[23] Huang Y, Sun J Z, Hu W P, Sang C F, Wang D Z 2016 Fusion Eng. Des. 102 28
[24] Miloshevsky G V, Hassanein 2010 Nucl. Fusion 50 115005
[25] Loarte A 2003 Plasma Phys. Control. Fusion 45 1549
[26] Hassanein A, Sizyuk T, Konkashbaev I 2009 J. Nucl. Mater. 390 777
[27] Jiang C B, Zhang Y L, Ding Z P 2007 Computational Fluid Mechanics (the first edition) (Beijing:China Power Press) p211(in Chinese)[江春波, 张永良, 丁则平2007计算流体力学(第一版)(北京:中国电力出版社)第211页]
[28] Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (2nd Ed.) (Oxford:Clarendon Press) pp89-91
[29] Behrisch R 2010 J. Synch. Investig. 4 549
[30] Semak V V, Damkroger B, Kempka S 1999 J. Phys. D:Appl. Phys. 32 1819
[31] Udaykumar H S, Shyy W 1995 Int. J. Heat Mass Transfer 38 2057
[32] Bazylev B N, Janeschitz G, Landman I S, Pestchanyi S E 2005 J. Nucl. Mater. 337 766
[33] Udaykumar H S, Shyy W, Rao M M 1996 Int. J. Numer. Methods Fluids 22 691
[34] Wurz H, Pestchanyi S, Bazylev B, Landman I, Kappler F 2001 J. Nucl. Mater. 290 1138
[35] Elsholz F, Scholl E, Scharfenorth C, Seewald G, Eichler H J, Rosenfeld A 2005 J. Appl. Phys. 98 103516
[36] Elsholz F, Scholl E, Rosenfeld A 2004 Appl. Phys. Lett. 84 4167
Catalog
Metrics
- Abstract views: 5887
- PDF Downloads: 194
- Cited By: 0