Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principle simulation of solid nitrobenzene under uniaxial compression

Fan Jun-Yu Zheng Zhao-Yang Su Yan Zhao Ji-Jun

Citation:

First-principle simulation of solid nitrobenzene under uniaxial compression

Fan Jun-Yu, Zheng Zhao-Yang, Su Yan, Zhao Ji-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Energetic materials (EMs) including explosives, propellants and pyrotechnics have been widely used for the military and many other purposes. Solid nitrobenzene (an organic molecular crystal) could be considered as a prototype of energetic material. Up to now, numerous studies have been devoted to crystal structures, spectrum properties and decomposition mechanisms for solid nitrobenzene experimentally and theoretically. However there has been a lack of the comprehensive understanding of the anisotropic characteristics under different loading conditions. Thus we investigate the hydrostatic and uniaxial compressions along three different lattice directions to determine this anisotropic effect. In this work, the density functional theory calculations are performed based on Cambridge Sequential Total Energy Package (CASTEP) code using normconserving pseudo potentials and a kinetic energy cutoff of 700 eV. The generalized gradient approximation with the Perdew-Burke-Ernzerhof parameterization is used. Monkhorst-Pack k-point meshes with a density of 0.05 -1 are used for Brillouin-zone integration. The empirical dispersion correction by Grimme is taken to account for week intermolecular interactions. The hydrostatic compressions are applied from 0 GPa to 20 GPa. Cell volume, lattice shape and coordinates of the atoms could be fully relaxed. while uniaxial compression is applied up to 70% of the equilibrium cell volume in steps of 2% along their lattice directions respectively. At each compression step, only atomic coordinates are allowed to relax, with the lattice fixed. The equilibrium lattice structures under hydrostatic compressions are obtained by full relaxation at 0 K temperature. In ambient condition, the calculated volume and parameter of the unit cell are underestimated compared with the experimental data, and corresponding errors are -2.98%, 0.01%, -4.39%, 5.71% respectively. In contrast, the calculated lattice energy is overestimated compared with the range of experimental results with 5.71% of the error. In high pressure condition, the volume and cell parameter of the unit cell as a function of compression ratio are plotted and compared with the experimental data. The theoretical and experimental values are close with the increase of the pressure, for instant, the error decreases from -4.39% at 0 GPa to -1.93% at 4 GPa. On the other hand, the uniaxial compression is applied along the directions of three lattice vectors. The changes of stress tensor, band gap, energy per atom as a function of compression ratio are also plotted and discussed, which can characterize the anisotropic effect of solid nitrobenzene. The most noticeable effect of anisotropy in solid nitrobenzene is the metallization at V/V0=0.76 compressed along the X axis, while the solid nitrobenzene under hydrostatic pressure or other uniaxial compressions up to V/V0=0.76 remains semiconductor with band gap larger than 1.591 eV. By analyzing the local density of states and charge density distribution of nitrobenzene crystal, we confirm that the metallization is caused by the overlap of the electron from benzene ring. Through calculating different physical parameters, we find that X axis is the most sensitive direction of nitrobenzene crystal. The studies of anisotropic effects are expected to shed light on the physical and chemical properties of solid nitrobenzene on an atomistic scale and provide several insights for experiments.
      Corresponding author: Su Yan, su.yan@dlut.edu.cn
    • Funds: Project supported by the Science Challenging Program of the National Defense Basic Scientific Research of China (Grant No. JCKY2016212A501), the National Natural Science Foundation of China (Grant No. 11674046), the China Postdoctoral Science Foundation (Grant No. 2016M592704), and the Supercomputing Center of Dalian University of Technology, China.
    [1]

    Zheng Z Y, Zhao J J 2016 Chin. Phys. B 25 076202

    [2]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [3]

    Politzer P, Murray J S, Seminario J M, Lane P, Grice M E, Concha M C 2001 J. Mol. Struc.:Theochem 573 1

    [4]

    Zheng Z Y, Zhao J J 2015 Chin. J. High Pressure Phys. 29 81 (in Chinese)[郑朝阳, 赵纪军2015高压 29 81]

    [5]

    Fried L E, Manaa M R, Pagoria P F, Simpson R L 2001 Annu. Rev. Mater. Res. 31 291

    [6]

    Zhang L, Chen L 2013 Acta Phys. Sin. 62 138201 (in Chinese)[张力, 陈朗2013 62 138201]

    [7]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese)[程和平, 但加坤, 黄智蒙, 彭辉, 陈光华2013 62 163102]

    [8]

    Meng Z R, Zhang W B, Du Y, Shang L P, Deng H 2015 Acta Phys. Sin. 64 073302 (in Chinese)[孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥2015 64 073302]

    [9]

    Zhang L, Chen L 2014 Acta Phys. Sin. 63 098105 (in Chinese)[张力, 陈朗2014 63 098105]

    [10]

    Boese R, Bläser D, Nussbaumer M, Krygowski T M 1992 Struct. Chem. 3 363

    [11]

    Trotter J 1959 Acta Crystallogr. 12 884

    [12]

    Larsen N W 2010 J. Mol. Struct. 963 100

    [13]

    Borisenko K B, Hargittai I 1996 J. Mol. Struct. 382 171

    [14]

    Domenicano A, Schultz G, Hargittai I, Colapietro M, Portalone G, George P, Bock C W 1989 Struct. Chem. 1 107

    [15]

    Clarkson J, Smith W E 2003 J. Mol. Struct. 655 413

    [16]

    Kozu N, Arai M, Tamura M, Fujihisa H, Aoki K, Yoshida M 2000 Jpn. J. Appl. Phys. 39 4875

    [17]

    Kobayashi T, Sekine T 2000 Phys. Rev. B 62 5281

    [18]

    Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D 2007 Phys. Lett. A 367 383

    [19]

    Chen F, Zhang H, Zhao F, Li Q l, Qu J Y 2008 J. Mol. Struc.:Theochem. 864 89

    [20]

    Wang W P, Liu F S, Liu Q J, Liu Z T 2016 Comput. Theor. Chem. 1075 98

    [21]

    Pruitt C J M, Goebbert D J 2013 Chem. Phys. Lett. 580 21

    [22]

    Fayet G, Joubert L, Rotureau P, Adamo C 2008 J. Phys. Chem. A 112 4054

    [23]

    Pein B C, Sun Y, Dlott D D 2013 J. Phys. Chem. A 117 6066

    [24]

    Dong S L, Sang D P 1996 J. Hazard. Mater. 51 67

    [25]

    Conroy M, Oleynik I, Zybin S, White C 2008 Phys. Rev. B 77 094107

    [26]

    Conroy M, Oleynik I, Zybin S, White C 2009 J. Phys. Chem. A 113 3610

    [27]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [28]

    Grimme S 2011 Wires. Comput. Mol. Sci. 1 211

    [29]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [30]

    Parr R G, Yang W 1995 Annu. Rev. Phys. Chem. 46 701

    [31]

    Segall M, Lindan P J, Probert M A, Pickard C, Hasnip P, Clark S, Payne M 2002 J. Phys.:Condens. Mat. 14 2717

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [34]

    Caillet J T, Claverie P 1975 Acta Crystallogr. Sec. A 31 448

    [35]

    Liu H, Zhao J J, Wei D Q, Gong Z Z 2006 J. Chem. Phys. 124 124501

    [36]

    Cui H L, Ji G F, Zhao J J, Zhao F, Chen X R, Zhang Q M, Wei D Q 2010 Mol. Simulat. 36 670

  • [1]

    Zheng Z Y, Zhao J J 2016 Chin. Phys. B 25 076202

    [2]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [3]

    Politzer P, Murray J S, Seminario J M, Lane P, Grice M E, Concha M C 2001 J. Mol. Struc.:Theochem 573 1

    [4]

    Zheng Z Y, Zhao J J 2015 Chin. J. High Pressure Phys. 29 81 (in Chinese)[郑朝阳, 赵纪军2015高压 29 81]

    [5]

    Fried L E, Manaa M R, Pagoria P F, Simpson R L 2001 Annu. Rev. Mater. Res. 31 291

    [6]

    Zhang L, Chen L 2013 Acta Phys. Sin. 62 138201 (in Chinese)[张力, 陈朗2013 62 138201]

    [7]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese)[程和平, 但加坤, 黄智蒙, 彭辉, 陈光华2013 62 163102]

    [8]

    Meng Z R, Zhang W B, Du Y, Shang L P, Deng H 2015 Acta Phys. Sin. 64 073302 (in Chinese)[孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥2015 64 073302]

    [9]

    Zhang L, Chen L 2014 Acta Phys. Sin. 63 098105 (in Chinese)[张力, 陈朗2014 63 098105]

    [10]

    Boese R, Bläser D, Nussbaumer M, Krygowski T M 1992 Struct. Chem. 3 363

    [11]

    Trotter J 1959 Acta Crystallogr. 12 884

    [12]

    Larsen N W 2010 J. Mol. Struct. 963 100

    [13]

    Borisenko K B, Hargittai I 1996 J. Mol. Struct. 382 171

    [14]

    Domenicano A, Schultz G, Hargittai I, Colapietro M, Portalone G, George P, Bock C W 1989 Struct. Chem. 1 107

    [15]

    Clarkson J, Smith W E 2003 J. Mol. Struct. 655 413

    [16]

    Kozu N, Arai M, Tamura M, Fujihisa H, Aoki K, Yoshida M 2000 Jpn. J. Appl. Phys. 39 4875

    [17]

    Kobayashi T, Sekine T 2000 Phys. Rev. B 62 5281

    [18]

    Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D 2007 Phys. Lett. A 367 383

    [19]

    Chen F, Zhang H, Zhao F, Li Q l, Qu J Y 2008 J. Mol. Struc.:Theochem. 864 89

    [20]

    Wang W P, Liu F S, Liu Q J, Liu Z T 2016 Comput. Theor. Chem. 1075 98

    [21]

    Pruitt C J M, Goebbert D J 2013 Chem. Phys. Lett. 580 21

    [22]

    Fayet G, Joubert L, Rotureau P, Adamo C 2008 J. Phys. Chem. A 112 4054

    [23]

    Pein B C, Sun Y, Dlott D D 2013 J. Phys. Chem. A 117 6066

    [24]

    Dong S L, Sang D P 1996 J. Hazard. Mater. 51 67

    [25]

    Conroy M, Oleynik I, Zybin S, White C 2008 Phys. Rev. B 77 094107

    [26]

    Conroy M, Oleynik I, Zybin S, White C 2009 J. Phys. Chem. A 113 3610

    [27]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [28]

    Grimme S 2011 Wires. Comput. Mol. Sci. 1 211

    [29]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [30]

    Parr R G, Yang W 1995 Annu. Rev. Phys. Chem. 46 701

    [31]

    Segall M, Lindan P J, Probert M A, Pickard C, Hasnip P, Clark S, Payne M 2002 J. Phys.:Condens. Mat. 14 2717

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [34]

    Caillet J T, Claverie P 1975 Acta Crystallogr. Sec. A 31 448

    [35]

    Liu H, Zhao J J, Wei D Q, Gong Z Z 2006 J. Chem. Phys. 124 124501

    [36]

    Cui H L, Ji G F, Zhao J J, Zhao F, Chen X R, Zhang Q M, Wei D Q 2010 Mol. Simulat. 36 670

  • [1] Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu. First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure. Acta Physica Sinica, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] Huang Jun-Hui, Li Yuan-He, Wang Jian, Li Shu-Lun, Ni Hai-Qiao, Niu Zhi-Chuan, Dou Xiu-Ming, Sun Bao-Quan. Exciton lifetime of quantum dots under hydrostatic pressure tuned scattering field Ag nanoparticles. Acta Physica Sinica, 2022, 71(24): 247302. doi: 10.7498/aps.71.20221344
    [3] Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure. Acta Physica Sinica, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [4] Peng Ya-Jing, Sun Shuang, Liu Wei-Na, Liu Yu-Hui. Initial dynamic response and reaction mechanism of cyclotrimethylenetrinitramine under shock loading. Acta Physica Sinica, 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [5] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [6] Chong Tao, Mo Jian-Jun, Zheng Xian-Xu, Fu Hua, Zhao Jian-Heng, Cai Jin-Tao. Dynamic behaviors of RDX single crystal under ramp compression. Acta Physica Sinica, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [7] Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang. Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules. Acta Physica Sinica, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [8] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [9] Peng Ya-Jing, Jiang Yan-Xue. Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material. Acta Physica Sinica, 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [10] Xu Jun, Xiao Xiao-Chun, Pan Yi-Shan, Ding Xin. Granular coal crack propagation study under uniaxial compression based on J integral. Acta Physica Sinica, 2014, 63(21): 214602. doi: 10.7498/aps.63.214602
    [11] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [12] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [13] Wang Wen-Ting, Hu Bing, Wang Ming-Wei. Femtosecond laser fine machining of energetic materials. Acta Physica Sinica, 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [14] Jiang Dong-Dong, Gu Yan, Feng Yu-Jun, Du Jin-Mei. Phase transformation and dielectric properties of lead zirconate stannate titanate ferroelectric ceramic under hydraulic compression. Acta Physica Sinica, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [15] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [16] Peng Ya-Jing, Liu Yu-Qiang, Wang Ying-Hui, Zhang Shu-Ping, Yang Yan-Qiang. Thermal dynamic analysis of picosecond and nanosecond single pulse laser flash-heating of Al/NC nanoenergetic composites. Acta Physica Sinica, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [17] Xia Qing-Zhong, Chen Bo, Zeng Gui-Yu, Luo Sun-Huo, Dong Hai-Shan, Rong Li-Xia, Dong Bao-Zhong. Experimental investigation of insensitive explosive C6H6N6O6 by small angle x-ray scattering technique. Acta Physica Sinica, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [18] LI FENG-YING, FU SHUN-SHENG, WANG RU-JU, M.H.MANGHNANI. ELASTIC PROPERTIES OF FLOAT GLASS AND SiO2+TiO2 GLASS UNDER HIGH PRESSURE. Acta Physica Sinica, 2000, 49(11): 2129-2132. doi: 10.7498/aps.49.2129
    [19] SUN WEI-LI, LI ZHAO-MIN. . Acta Physica Sinica, 1995, 44(10): 1661-1669. doi: 10.7498/aps.44.1661
    [20] Su Fang, Xie Bin, Zhao Ming-Wen, Wu Xi-Jun. . Acta Physica Sinica, 1995, 44(5): 755-762. doi: 10.7498/aps.44.755
Metrics
  • Abstract views:  6352
  • PDF Downloads:  416
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2016
  • Accepted Date:  21 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map