搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于体积平均法模拟铸锭凝固过程的可靠性分析

李日 王健 周黎明 潘红

引用本文:
Citation:

基于体积平均法模拟铸锭凝固过程的可靠性分析

李日, 王健, 周黎明, 潘红

The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot

Li Ri, Wang Jian, Zhou Li-Ming, Pan Hong
PDF
导出引用
  • 采用欧拉方法和体积平均思想,建立了以液相为主相、等轴晶和柱状晶视为两类不同第二相的三相模型,耦合凝固过程质量、动量、能量、溶质的守恒方程和晶粒的传输方程. 以Al-4.7 wt.%Cu二元合金铸锭为例,模拟了合金铸锭二维的流场、温度场、溶质场、柱状晶向等轴晶转变过程以及等轴晶的沉积过程,并将模拟的铸锭组织和偏析结果与实验所得结果对比.温度场、流场和组织的模拟结果与理论基本一致,但由于模型没有考虑收缩以及浇注时的强迫对流,导致铸锭外层的偏析模拟值比实测值低,内层的模拟值比实测值高.所以收缩和逆偏析在模拟中是不可忽略的,这也是本文模型的改进方向.另外在所得模拟结果的基础上分析了体积平均法计算铸锭凝固过程的优点和不足之处.
    Adopting the Euler and the volume averaging methods, a three-phase mathematical model with parent melt as the primary phase, columnar dendrites and equiaxed grains as two different secondary phases is developed, and the coupled macroscopic mass, momentum, energy and species conservation equations are obtained separately. Taking the Al-4.7 wt% Cu binary alloy ingots for example, the flow field, temperature field, solute field, columnar-to-equiaxed-transition and grain sedimentation in two-dimension are simulated, and the simulated result of ingot and macrosegregation result are compared with their experimental values. The simulation results of temperature field, flow field and structure are basically consistent with the theoretical results, but the result of solute field shows that the simulated values is lower than the measured value on the edge, this is because the model does not take the shrinkage and forced convection into account, and the inner results is higher than the results on edge. The shrinkage and inverse segregation therefore should not be neglected. This model are still necessarily improved. Besides, based on the analysis of simulation results, the advantages and the disadvantages of the volume averaging method to simulate the solidification in a ingot are evaluated.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB610402)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB610402).
    [1]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Transfer. 30 2161

    [2]

    Beckermann C, Viskanta R 1988 Physicochem. Hydrodyn. 10 195

    [3]

    Ni J, Beckermann C 1991 Metall. Trans. B 22 349

    [4]

    Wang C Y, Beckermann C 1996 Metall. Trans. A 27 2754

    [5]

    Wu M H, Andreas L 2006 Metall. Trans. A 37 1613

    [6]

    Wang T M, Yao S, Zhang X G, Jin J Z 2006 Acta Metall. Sin. 42 584 (in Chinese) [王同敏, 姚山, 张兴国, 金俊泽 2006 金属学报 42 584]

    [7]

    Wu M, Ludwig A 2009 Acta Mater. 57 5621

    [8]

    Wu M, Ludwig A 2009 Acta Mater. 57 5632

    [9]

    Liu D R, Sang B G, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 104 (in Chinese) [刘东戎, 桑宝光, 康秀红, 李殿中 2009 58 104]

    [10]

    Wu M, Fjeld A, Ludwig A 2010 Comp. Mater. Sci. 50 32

    [11]

    Wu M, Fjeld A, Ludwig A 2010 Comp. Mater. Sci. 50 43

    [12]

    Zhang H W, Nakajima K, Wang E G, He J C 2012 Chin. J. Nonfer. Metal 22 1883 (in Chinese) [张红伟, Nakajima Keiji, 王恩刚, 赫冀成 2012 中国有色金属学报 22 1883]

    [13]

    Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014 Acta Phys. Sin. 63 076101 (in Chinese) [王哲, 王发展, 王欣, 何银花, 马姗, 吴振 2014 63 076101]

    [14]

    Hunt J D 1984 Mater. Sci. Eng. 65 75

    [15]

    Li R, Shen H D, Feng C H, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 62 188106]

    [16]

    Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 285 (in Chinese) [孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺 2009 58 285]

    [17]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 58 278]

    [18]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 61 150501]

    [19]

    Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516

    [20]

    Wang Y Q, Wang J C, Li J J 2012 Acta Phys. Sin. 61 118103 (in Chinese) [王雅琴, 王锦程, 李俊杰 2012 61 118103]

  • [1]

    Bennon W D, Incropera F P 1987 Int. J. Heat Mass Transfer. 30 2161

    [2]

    Beckermann C, Viskanta R 1988 Physicochem. Hydrodyn. 10 195

    [3]

    Ni J, Beckermann C 1991 Metall. Trans. B 22 349

    [4]

    Wang C Y, Beckermann C 1996 Metall. Trans. A 27 2754

    [5]

    Wu M H, Andreas L 2006 Metall. Trans. A 37 1613

    [6]

    Wang T M, Yao S, Zhang X G, Jin J Z 2006 Acta Metall. Sin. 42 584 (in Chinese) [王同敏, 姚山, 张兴国, 金俊泽 2006 金属学报 42 584]

    [7]

    Wu M, Ludwig A 2009 Acta Mater. 57 5621

    [8]

    Wu M, Ludwig A 2009 Acta Mater. 57 5632

    [9]

    Liu D R, Sang B G, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 104 (in Chinese) [刘东戎, 桑宝光, 康秀红, 李殿中 2009 58 104]

    [10]

    Wu M, Fjeld A, Ludwig A 2010 Comp. Mater. Sci. 50 32

    [11]

    Wu M, Fjeld A, Ludwig A 2010 Comp. Mater. Sci. 50 43

    [12]

    Zhang H W, Nakajima K, Wang E G, He J C 2012 Chin. J. Nonfer. Metal 22 1883 (in Chinese) [张红伟, Nakajima Keiji, 王恩刚, 赫冀成 2012 中国有色金属学报 22 1883]

    [13]

    Wang Z, Wang F Z, Wang X, He Y H, Ma S, Wu Z 2014 Acta Phys. Sin. 63 076101 (in Chinese) [王哲, 王发展, 王欣, 何银花, 马姗, 吴振 2014 63 076101]

    [14]

    Hunt J D 1984 Mater. Sci. Eng. 65 75

    [15]

    Li R, Shen H D, Feng C H, Pan H, Feng C N 2013 Acta Phys. Sin. 62 188106 (in Chinese) [李日, 沈焕弟, 冯长海, 潘红, 冯传宁 2013 62 188106]

    [16]

    Sun D K, Zhu M F, Yang C R, Pan S Y, Dai T 2009 Acta Phys. Sin. 58 285 (in Chinese) [孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺 2009 58 285]

    [17]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 58 278]

    [18]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 61 150501]

    [19]

    Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516

    [20]

    Wang Y Q, Wang J C, Li J J 2012 Acta Phys. Sin. 61 118103 (in Chinese) [王雅琴, 王锦程, 李俊杰 2012 61 118103]

  • [1] 程亮元, 徐进良. 流动方向对超临界二氧化碳流动传热特性的影响.  , 2024, 73(2): 024401. doi: 10.7498/aps.73.20231142
    [2] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验.  , 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [3] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用.  , 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [4] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟.  , 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [5] 张海松, 朱鑫杰, 朱兵国, 徐进良, 刘欢. 浮升力和流动加速对超临界CO2管内流动传热影响.  , 2020, 69(6): 064401. doi: 10.7498/aps.69.20191521
    [6] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响.  , 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [7] 闫晨帅, 徐进良. 超临界压力CO2在水平圆管内流动传热数值分析.  , 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [8] 王胜, 徐进良, 张龙艳. 非对称纳米通道内流体流动与传热的分子动力学.  , 2017, 66(20): 204704. doi: 10.7498/aps.66.204704
    [9] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型.  , 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [10] 黄艳, 孙继忠, 桑超峰, 胡万鹏, 王德真. 边界局域模引起钨偏滤器靶板侵蚀和形貌变化的数值模拟研究.  , 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [11] 胡海豹, 何强, 余思潇, 张招柱, 宋东. 低温光滑壁面上水滴撞击结冰行为.  , 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [12] 李大树, 仇性启, 郑志伟. 液滴碰撞液膜润湿壁面空气夹带数值分析.  , 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [13] 温家乐, 徐志成, 古宇, 郑冬琴, 钟伟荣. 异质结碳纳米管的热整流效率.  , 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [14] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究.  , 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [15] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究.  , 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [16] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性.  , 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [17] 肖波齐, 陈玲霞, 蒋国平, 饶连周, 王宗篪, 魏茂金. 池沸腾传热的数学分析.  , 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [18] 刘东戎, 桑宝光, 康秀红, 李殿中. 考虑固相移动的大尺寸钢锭宏观偏析数值模拟.  , 2009, 58(13): 104-S111. doi: 10.7498/aps.58.104
    [19] 蒋益明, 谢亨博, 郭 峰, 刘 平, 李 劲. 金属有机双层膜传质模型理论研究.  , 2005, 54(12): 5769-5773. doi: 10.7498/aps.54.5769
    [20] 谢亨博, 蒋益明, 郭 峰, 刘 平, 李 劲. Ag/TCNQ纳米双层膜中传质规律研究.  , 2004, 53(11): 3849-3852. doi: 10.7498/aps.53.3849
计量
  • 文章访问数:  6611
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-28
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-06-05

/

返回文章
返回
Baidu
map