-
By using large-scale atomic/molecular massively parallel simulator (LAMMPS) code, a molecular dynamics simulation is performed in the NPT ensemble at zero pressure to investigate the influence of melting rates γ on the evolutional characteristics of vanadium atomic structure such as body-centered cubic (BCC), hexagonal close-packed structure (HCP), face centered cubic (FCC), simple cubic (SC) and icosahedra (ICO) during the rapid melting of solid vanadium crystal at five different melting rates (γ1 = 1 × 1011 K/s, γ2 = 1 × 1012 K/s, γ3 = 1 × 1013 K/s, γ4 = 1 × 1014 K/s , γ5 = 1 × 1015 K/s), in which 16000 atoms in a cubic box under the periodic boundary condition are considered, and their motion equations are solved by Verlet’s algorithm in the velocity form in time steps of 1 fs. Constant pressure P and temperature T are imposed by a modified Nose-Hoover method for both P and T variables, and an embedded-atom model (EAM) potential is utilized. For identifying the local atomic structures of liquid and solid vanadium at different temperatures, a polyhedral template matching method (PTMM) is used by measuring the root-mean square deviation (RMSD), in which clusters are classified as the topology of the local atomic environment without any ambiguity in the classification. Subsequently, the variation of the potential energy, entropy and Gibbs free energy of FCC, HCP, BCC and ICO vanadium clusters are calculated through ab initio MD simulation in the canonical ensemble (NVT) at selected temperatures, and the lowest-energy dynamic structure and its corresponding static heating structure are also shown in this paper. Based on the above calculated results, it is found that the melting point of refractory metal vanadium increases obviously with the increase of heating rate, but the heating rate only presents a limited effect on the population of atomic structure for each of BCC, HCP, FCC, SC and ICO. Namely, the temperature still plays a dominant role in the rapid melting process of V rather than heating rate. Moreover, the ab initio MD simulation and thermodynamics analysis further reveal that lots of ICO clusters of vanadium can exist stably in the liquid region rather than in solid crystal, which is not only due to its higher stability and longer lifetime than those of crystalline atomic clusters, but also because ICO possesses higher entropy and lower Gibbs free energy in high temperature liquid region.
-
Keywords:
- molecular dynamics /
- vanadium /
- melting /
- cluster
[1] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
Google Scholar
[2] Baletto F 2005 Rev. Mod. Phys. 77 371
Google Scholar
[3] Turci F, Tarjus G, Royall C P 2017 Phys. Rev. Lett. 118 215501
Google Scholar
[4] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801
Google Scholar
[5] Sprakel J, Zaccone A, Spaepen F, Schall P, Weitz D 2017 Phys. Rev. Lett. 118 088003
Google Scholar
[6] Şopu D, Stukowski A, Stoica M, Scudino S 2017 Phys. Rev. Lett. 119 195503
Google Scholar
[7] Jiang Y Q, Wen D D, Peng P 2017 J. Mole. Liquids 230 271
Google Scholar
[8] Jiang Y Q, Wen D D, Peng P, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156
Google Scholar
[9] Zhong L, Wang J, Sheng H, Zhang Z, Mao S X 2014 Nature 512 177
Google Scholar
[10] 蒋元祺, 彭平 2018 67 132101
Google Scholar
Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101
Google Scholar
[11] Jiang Y Q, Peng P 2020 Chin. Phys. B. 29 046105
Google Scholar
[12] Jiang Y Q, Wen D D, He W X, Peng P 2018 Mol. Simulat. 44 1183
Google Scholar
[13] 武振伟, 李茂枝, 徐莉梅, 汪卫华 2017 66 176405
Google Scholar
Wu Z W, Li M Z, Xu L M, Wang W H 2017 Acta Phys. Sin. 66 176405
Google Scholar
[14] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 65 066401
Google Scholar
Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401
Google Scholar
[15] 孙保安, 王利峰, 邵建华 2017 66 178103
Google Scholar
Sun B A, Wang L F, Shao J H 2017 Acta Phys. Sin. 66 178103
Google Scholar
[16] Yang M H, Cai B, Sun Y, Zhang F, Wang Y F, Wang C Z, Ho K M 2019 Phys. Rev. Mater. 3 125602
Google Scholar
[17] 孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 67 126101
Google Scholar
Sun Y T, Wang C, Lü Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101
Google Scholar
[18] Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M W, Schroers J, Liu Y H, Wang W H 2019 Nature 569 99
Google Scholar
[19] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
Google Scholar
[20] Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376
Google Scholar
[21] Wang H Q, Li H F 2015 RSC Adv. 5 94685
Google Scholar
[22] Sosso C C, Chen J, Stephen J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078
Google Scholar
[23] Taherkhani F, Akbarzadeh H, Rezania H 2014 J. Alloys. Compd. 617 746
Google Scholar
[24] Chen L, Wang Q, Xiong L 2017 J. Nanopart. Res. 19 300
Google Scholar
[25] Zhang Z, Hu W, Xiao S 2006 Phys. Rev. B 73 125443
Google Scholar
[26] Nunez S, Lopez J M, Aguado A 2012 Nanoscale 4 6481
Google Scholar
[27] Steenbergen K G, Gaston N 2013 Phys. Chem. Chem. Phys. 15 15325
Google Scholar
[28] Taran S, Garip A K, Arslan H 2020 J. Clus. Sci. 10876
Google Scholar
[29] Taran S, Garip A K, Arslan H 2020 Chin. Phys. B 29 077801
Google Scholar
[30] Elatresh S F, Bonev S A, Gregoryanz E, Ashcroft N W 2016 Phys. Rev. B 94 104107
Google Scholar
[31] Zhao C Y, Tao Y, Yu Y S 2020 Int. J. Mass. Tran. 150 119382
Google Scholar
[32] Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng. 111 1457
Google Scholar
[33] Fang X W, Wang C Z, Yao Y X, Ding Z J, Ho K M 2011 Phys. Rev. B 83 224203
Google Scholar
[34] Aguado A, Jarrold M F 2011 Annu. Rev. Phys. Chem. 62 151
Google Scholar
[35] Lekka C E, Papaconstantopoulos D A 2007 Surf. Sci. 601 3937
Google Scholar
[36] Pyfer K L, Kafader J O, Yalamanchali A, Jarrold M F 2014 J. Phys. Chem. A 118 4900
Google Scholar
[37] Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, Issendorff B 2005 Phys. Rev. Lett. 94 035701
Google Scholar
[38] Zhang L, Sun H 2010 Phys. Status Solidi 207 1178
Google Scholar
[39] Jena P, Sun Q 2018 Chem. Rev. 118 5755
Google Scholar
[40] Chacko S, Joshi K, Kanhere D G 2004 Phys. Rev. Lett. 92 135506
Google Scholar
[41] Rapacioli M, Tarrat N, Spiegelman F 2018 J. Phys. Chem. A 122 4092
Google Scholar
[42] Breaux G.A, Benirschke R C, Sugai T, Kinnear B S, Jarrold M F 2003 Phys. Rev. Lett. 91 215508
Google Scholar
[43] Nelli D, Ferrando R 2019 Nanoscale 11 13040
Google Scholar
[44] Settem M, Kanjarla A K 2020 Sci. Rep. 10 3296
Google Scholar
[45] Wu J, Qi L, You H, Gross A, Li J, Yang H 2012 J. Am. Chem. Soc. 134 11880
Google Scholar
[46] Zhang J, Chen J, Hu P, Wang H 2020 Chin. Chem. Lett. 31 890
Google Scholar
[47] Mao H K, Chen X J, Ding Y, Li B, Wang B 2018 Rev. Mod. Phys. 90 015007
Google Scholar
[48] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[49] Cai J, Ye Y 1996 Phys. Rev. B 54 8398
Google Scholar
[50] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
Google Scholar
[51] Larsen P M, Schmidt S, Schiøtz J 2016 Model. Simul. Mater. Sc. 24 055007
Google Scholar
[52] 蒋元祺 2015 博士学位论文(长沙: 湖南大学)
Jiang Y Q 2015 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)
-
图 7 利用多面体模板匹配法分析得到的5种不同熔化速率下各种类型团簇原子分布随温度的演变关系 (a) FCC; (b) HCP; (c) BCC; (d) ICO; (e) SC; (f)其他类型团簇
Figure 7. The fraction of the various types atoms in V system as a function of temperature obtained from the polyhedral template matching at five various rates: (a) FCC; (b) HCP; (c) BCC; (d) ICO; (e) SC; (f) other types atoms counts.
-
[1] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
Google Scholar
[2] Baletto F 2005 Rev. Mod. Phys. 77 371
Google Scholar
[3] Turci F, Tarjus G, Royall C P 2017 Phys. Rev. Lett. 118 215501
Google Scholar
[4] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F 2009 Phys. Rev. Lett. 102 057801
Google Scholar
[5] Sprakel J, Zaccone A, Spaepen F, Schall P, Weitz D 2017 Phys. Rev. Lett. 118 088003
Google Scholar
[6] Şopu D, Stukowski A, Stoica M, Scudino S 2017 Phys. Rev. Lett. 119 195503
Google Scholar
[7] Jiang Y Q, Wen D D, Peng P 2017 J. Mole. Liquids 230 271
Google Scholar
[8] Jiang Y Q, Wen D D, Peng P, Han S C, Hou Z Y 2015 Comput. Mater. Sci. 99 156
Google Scholar
[9] Zhong L, Wang J, Sheng H, Zhang Z, Mao S X 2014 Nature 512 177
Google Scholar
[10] 蒋元祺, 彭平 2018 67 132101
Google Scholar
Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101
Google Scholar
[11] Jiang Y Q, Peng P 2020 Chin. Phys. B. 29 046105
Google Scholar
[12] Jiang Y Q, Wen D D, He W X, Peng P 2018 Mol. Simulat. 44 1183
Google Scholar
[13] 武振伟, 李茂枝, 徐莉梅, 汪卫华 2017 66 176405
Google Scholar
Wu Z W, Li M Z, Xu L M, Wang W H 2017 Acta Phys. Sin. 66 176405
Google Scholar
[14] 邓永和, 文大东, 彭超, 韦彦丁, 赵瑞, 彭平 2016 65 066401
Google Scholar
Deng Y H, Wen D D, Peng C, Wei Y D, Zhao R, Peng P 2016 Acta Phys. Sin. 65 066401
Google Scholar
[15] 孙保安, 王利峰, 邵建华 2017 66 178103
Google Scholar
Sun B A, Wang L F, Shao J H 2017 Acta Phys. Sin. 66 178103
Google Scholar
[16] Yang M H, Cai B, Sun Y, Zhang F, Wang Y F, Wang C Z, Ho K M 2019 Phys. Rev. Mater. 3 125602
Google Scholar
[17] 孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华 2018 67 126101
Google Scholar
Sun Y T, Wang C, Lü Y M, Hu Y C, Luo P, Liu M, Xian H J, Zhao D Q, Ding D W, Sun B A, Pan M X, Wen P, Bai H Y, Liu Y H, Wang W H 2018 Acta Phys. Sin. 67 126101
Google Scholar
[18] Li M X, Zhao S F, Lu Z, Hirata A, Wen P, Bai H Y, Chen M W, Schroers J, Liu Y H, Wang W H 2019 Nature 569 99
Google Scholar
[19] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
Google Scholar
[20] Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376
Google Scholar
[21] Wang H Q, Li H F 2015 RSC Adv. 5 94685
Google Scholar
[22] Sosso C C, Chen J, Stephen J, Fitzner M, Pedevilla P, Zen A, Michaelides A 2016 Chem. Rev. 116 7078
Google Scholar
[23] Taherkhani F, Akbarzadeh H, Rezania H 2014 J. Alloys. Compd. 617 746
Google Scholar
[24] Chen L, Wang Q, Xiong L 2017 J. Nanopart. Res. 19 300
Google Scholar
[25] Zhang Z, Hu W, Xiao S 2006 Phys. Rev. B 73 125443
Google Scholar
[26] Nunez S, Lopez J M, Aguado A 2012 Nanoscale 4 6481
Google Scholar
[27] Steenbergen K G, Gaston N 2013 Phys. Chem. Chem. Phys. 15 15325
Google Scholar
[28] Taran S, Garip A K, Arslan H 2020 J. Clus. Sci. 10876
Google Scholar
[29] Taran S, Garip A K, Arslan H 2020 Chin. Phys. B 29 077801
Google Scholar
[30] Elatresh S F, Bonev S A, Gregoryanz E, Ashcroft N W 2016 Phys. Rev. B 94 104107
Google Scholar
[31] Zhao C Y, Tao Y, Yu Y S 2020 Int. J. Mass. Tran. 150 119382
Google Scholar
[32] Feng D, Feng Y, Yuan S, Zhang X, Wang G 2017 Appl. Therm. Eng. 111 1457
Google Scholar
[33] Fang X W, Wang C Z, Yao Y X, Ding Z J, Ho K M 2011 Phys. Rev. B 83 224203
Google Scholar
[34] Aguado A, Jarrold M F 2011 Annu. Rev. Phys. Chem. 62 151
Google Scholar
[35] Lekka C E, Papaconstantopoulos D A 2007 Surf. Sci. 601 3937
Google Scholar
[36] Pyfer K L, Kafader J O, Yalamanchali A, Jarrold M F 2014 J. Phys. Chem. A 118 4900
Google Scholar
[37] Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, Issendorff B 2005 Phys. Rev. Lett. 94 035701
Google Scholar
[38] Zhang L, Sun H 2010 Phys. Status Solidi 207 1178
Google Scholar
[39] Jena P, Sun Q 2018 Chem. Rev. 118 5755
Google Scholar
[40] Chacko S, Joshi K, Kanhere D G 2004 Phys. Rev. Lett. 92 135506
Google Scholar
[41] Rapacioli M, Tarrat N, Spiegelman F 2018 J. Phys. Chem. A 122 4092
Google Scholar
[42] Breaux G.A, Benirschke R C, Sugai T, Kinnear B S, Jarrold M F 2003 Phys. Rev. Lett. 91 215508
Google Scholar
[43] Nelli D, Ferrando R 2019 Nanoscale 11 13040
Google Scholar
[44] Settem M, Kanjarla A K 2020 Sci. Rep. 10 3296
Google Scholar
[45] Wu J, Qi L, You H, Gross A, Li J, Yang H 2012 J. Am. Chem. Soc. 134 11880
Google Scholar
[46] Zhang J, Chen J, Hu P, Wang H 2020 Chin. Chem. Lett. 31 890
Google Scholar
[47] Mao H K, Chen X J, Ding Y, Li B, Wang B 2018 Rev. Mod. Phys. 90 015007
Google Scholar
[48] Plimpton S 1995 J. Comput. Phys. 117 1
Google Scholar
[49] Cai J, Ye Y 1996 Phys. Rev. B 54 8398
Google Scholar
[50] Stukowski A 2010 Model. Simul. Mater. Sc. 18 015012
Google Scholar
[51] Larsen P M, Schmidt S, Schiøtz J 2016 Model. Simul. Mater. Sc. 24 055007
Google Scholar
[52] 蒋元祺 2015 博士学位论文(长沙: 湖南大学)
Jiang Y Q 2015 Ph. D. Dissertation (Changsha: Hunan University) (in Chinese)
Catalog
Metrics
- Abstract views: 8478
- PDF Downloads: 138
- Cited By: 0