-
In the past few years, with developing the technology of electromagnetically induced transparency (EIT) and improving the semiconductor technology, it has become possible to realize the application of optical soliton to communication device. Studies show the reduction of group velocity of the optical soliton in EIT medium under weak driving condition, which possibly realizes the storing of optical pulses in information storage. More importantly, semiconductor quantum wells have the inherent advantages such as large electric dipole moments of the transitions, high nonlinear optical coefficients, small size, easily operating and integrating. So it is considered to be the most potential EIT medium to realize the application of quantum devices. The optical soliton behavior in the semiconductor quantum well is studied, which can provide a certain reference value for the practical application of information transmission and processing together quantum devices. Although there has been a series of researches on both linear and nonlinear optical properties in semiconductor quantum wells structures, few publications report the effects of the cross-coupling longitude-optical phonon (CCLOP) relaxation on its linear and nonlinear optical properties. However, to our knowledge, the electron-longitude-optical phonon scattering rate can be realized experimentally by varying the sub-picosecond range to the order of a picosecond. According to this, we in the paper study the effects of the CCLOP relaxation on its linear and nonlinear optical properties in a cascade-type three-level EIT semiconductor quantum well. According to the current experimental conditions, we first propose a cascade-type three-level EIT semiconductor quantum well model. And in this model we consider the longitudinal optical phonons coupling between the bond state and anti-bond state. Subsequently, by using the multiple-scale method, we analytically study the dynamical properties of solitons in the cascade-type three-level EIT semiconductor quantum well with the CCRLOP. It is shown that when the CCRLOP strength is smaller, there exhibits the dark soliton in the EIT semiconductor quantum well. Only if the strength of the CCRLOP is larger, will in the system there exists bright soliton. That is to say, with increasing the strength of the CCRLOP, the soliton type of the system is converted from dark to bright soliton little by little. So, the temporal soliton type can be effectively controlled by the strength of the CCRLOP. In addition, we also find that the group velocity of the soliton can also be controlled by the strength of CCRLOP and the control light. These results may provide a theoretical basis for manipulating experimentally the dynamics of soliton in semiconductor quantum wells.
-
Keywords:
- cross-coupling relaxation of longitudinal optical phonons /
- electromagnetically induced transparency /
- semiconductor quantum wells
[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601
[4] Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901
[5] Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese)[王波, 李淑静, 常宏, 武海斌, 谢常德, 王海2005 54 4136]
[6] Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447
[7] Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[8] Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27
[9] Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594
[10] Wu Y, Wen L, Zhu Y 2003 Opt. Lett. 28 631
[11] Chen Y, Bai Z, Huang G 2014 Phys. Rev. A 89 023835
[12] Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617
[13] Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904
[14] Wu H B, Chang H, Ma J, Xie C D, Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)[武海斌, 常宏, 马杰, 谢常德, 王海2005 54 3632]
[15] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490
[16] Yang W X, Hou J M, Lin Y, Lee R K 2009 Phys. Rev. A 79 033825
[17] Paspalakis E, Tsaousidou M, Terzis A F 2006 Phys. Rev. B 73 125344
[18] Li J H 2007 Phys. Rev. B 75 155329
[19] Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. Lett. 95 057401
[20] Asano T, Noda S, Abe T, Sasaki A 1996 Jpn. J. Appl. Phys 35 1285
[21] Yang W X, Lee R K 2008 Opt. Express 16 17161
[22] Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225
[23] Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803
[24] Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22
[25] Huang J L, Xu J Z, Xiong Y T 2004 Soliton Conceptions, Theory and Application (1st Ed.) (Beijing:Higher Education Press) p96(in Chinese)[黄景宁, 徐济仲, 熊吟涛2004孤子概念、原理和应用(第1版) (北京:高等教育出版社)第96页]
[26] Yang W X, Hou J M, Lee R K 2008 Phys. Rev. A 77 033838
[27] She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392
[28] Dynes J F, Frogley M D, Beck M, Faist J, Phillips C C 2005 Phys. Rev. Lett. 94 157403
[29] She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208
[30] Hang C, Li Y, Ma L, Huang G X 2006 Phys. Rev. A 74 012319
[31] Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408
[32] Zhang B, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 110501 (in Chinese)[张波, 王登龙, 佘彦超, 张蔚曦2013 62 110501]
[33] Roskos H G, Nuss M C, Shah J, Leo K, Miller D A B, Fox A M, Schmitt-Rink S, Köhler K 1992 Phys. Rev. Lett. 68 2216
-
[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601
[4] Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901
[5] Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese)[王波, 李淑静, 常宏, 武海斌, 谢常德, 王海2005 54 4136]
[6] Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447
[7] Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[8] Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27
[9] Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594
[10] Wu Y, Wen L, Zhu Y 2003 Opt. Lett. 28 631
[11] Chen Y, Bai Z, Huang G 2014 Phys. Rev. A 89 023835
[12] Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617
[13] Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904
[14] Wu H B, Chang H, Ma J, Xie C D, Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)[武海斌, 常宏, 马杰, 谢常德, 王海2005 54 3632]
[15] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490
[16] Yang W X, Hou J M, Lin Y, Lee R K 2009 Phys. Rev. A 79 033825
[17] Paspalakis E, Tsaousidou M, Terzis A F 2006 Phys. Rev. B 73 125344
[18] Li J H 2007 Phys. Rev. B 75 155329
[19] Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. Lett. 95 057401
[20] Asano T, Noda S, Abe T, Sasaki A 1996 Jpn. J. Appl. Phys 35 1285
[21] Yang W X, Lee R K 2008 Opt. Express 16 17161
[22] Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225
[23] Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803
[24] Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22
[25] Huang J L, Xu J Z, Xiong Y T 2004 Soliton Conceptions, Theory and Application (1st Ed.) (Beijing:Higher Education Press) p96(in Chinese)[黄景宁, 徐济仲, 熊吟涛2004孤子概念、原理和应用(第1版) (北京:高等教育出版社)第96页]
[26] Yang W X, Hou J M, Lee R K 2008 Phys. Rev. A 77 033838
[27] She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392
[28] Dynes J F, Frogley M D, Beck M, Faist J, Phillips C C 2005 Phys. Rev. Lett. 94 157403
[29] She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208
[30] Hang C, Li Y, Ma L, Huang G X 2006 Phys. Rev. A 74 012319
[31] Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408
[32] Zhang B, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 110501 (in Chinese)[张波, 王登龙, 佘彦超, 张蔚曦2013 62 110501]
[33] Roskos H G, Nuss M C, Shah J, Leo K, Miller D A B, Fox A M, Schmitt-Rink S, Köhler K 1992 Phys. Rev. Lett. 68 2216
Catalog
Metrics
- Abstract views: 6135
- PDF Downloads: 227
- Cited By: 0