Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controlling of dark or bright soliton type in a cascade-type electromagnetically induced transparency semiconductor quantum well by the coupling longitudinal optical phonons

Tang Hong Wang Deng-Long Zhang Wei-Xi Ding Jian-Wen Xiao Si-Guo

Citation:

Controlling of dark or bright soliton type in a cascade-type electromagnetically induced transparency semiconductor quantum well by the coupling longitudinal optical phonons

Tang Hong, Wang Deng-Long, Zhang Wei-Xi, Ding Jian-Wen, Xiao Si-Guo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past few years, with developing the technology of electromagnetically induced transparency (EIT) and improving the semiconductor technology, it has become possible to realize the application of optical soliton to communication device. Studies show the reduction of group velocity of the optical soliton in EIT medium under weak driving condition, which possibly realizes the storing of optical pulses in information storage. More importantly, semiconductor quantum wells have the inherent advantages such as large electric dipole moments of the transitions, high nonlinear optical coefficients, small size, easily operating and integrating. So it is considered to be the most potential EIT medium to realize the application of quantum devices. The optical soliton behavior in the semiconductor quantum well is studied, which can provide a certain reference value for the practical application of information transmission and processing together quantum devices. Although there has been a series of researches on both linear and nonlinear optical properties in semiconductor quantum wells structures, few publications report the effects of the cross-coupling longitude-optical phonon (CCLOP) relaxation on its linear and nonlinear optical properties. However, to our knowledge, the electron-longitude-optical phonon scattering rate can be realized experimentally by varying the sub-picosecond range to the order of a picosecond. According to this, we in the paper study the effects of the CCLOP relaxation on its linear and nonlinear optical properties in a cascade-type three-level EIT semiconductor quantum well. According to the current experimental conditions, we first propose a cascade-type three-level EIT semiconductor quantum well model. And in this model we consider the longitudinal optical phonons coupling between the bond state and anti-bond state. Subsequently, by using the multiple-scale method, we analytically study the dynamical properties of solitons in the cascade-type three-level EIT semiconductor quantum well with the CCRLOP. It is shown that when the CCRLOP strength is smaller, there exhibits the dark soliton in the EIT semiconductor quantum well. Only if the strength of the CCRLOP is larger, will in the system there exists bright soliton. That is to say, with increasing the strength of the CCRLOP, the soliton type of the system is converted from dark to bright soliton little by little. So, the temporal soliton type can be effectively controlled by the strength of the CCRLOP. In addition, we also find that the group velocity of the soliton can also be controlled by the strength of CCRLOP and the control light. These results may provide a theoretical basis for manipulating experimentally the dynamics of soliton in semiconductor quantum wells.
      Corresponding author: Wang Deng-Long, dlwang@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474245, 11374252, 51372214) and the Scientific Research Fund of Guizhou Provincial Education Department, China (Grant Nos. KY(2015)384, KY(2015)446).
    [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601

    [4]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901

    [5]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese)[王波, 李淑静, 常宏, 武海斌, 谢常德, 王海2005 54 4136]

    [6]

    Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447

    [7]

    Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666

    [8]

    Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27

    [9]

    Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594

    [10]

    Wu Y, Wen L, Zhu Y 2003 Opt. Lett. 28 631

    [11]

    Chen Y, Bai Z, Huang G 2014 Phys. Rev. A 89 023835

    [12]

    Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [13]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [14]

    Wu H B, Chang H, Ma J, Xie C D, Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)[武海斌, 常宏, 马杰, 谢常德, 王海2005 54 3632]

    [15]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [16]

    Yang W X, Hou J M, Lin Y, Lee R K 2009 Phys. Rev. A 79 033825

    [17]

    Paspalakis E, Tsaousidou M, Terzis A F 2006 Phys. Rev. B 73 125344

    [18]

    Li J H 2007 Phys. Rev. B 75 155329

    [19]

    Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. Lett. 95 057401

    [20]

    Asano T, Noda S, Abe T, Sasaki A 1996 Jpn. J. Appl. Phys 35 1285

    [21]

    Yang W X, Lee R K 2008 Opt. Express 16 17161

    [22]

    Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225

    [23]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [24]

    Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22

    [25]

    Huang J L, Xu J Z, Xiong Y T 2004 Soliton Conceptions, Theory and Application (1st Ed.) (Beijing:Higher Education Press) p96(in Chinese)[黄景宁, 徐济仲, 熊吟涛2004孤子概念、原理和应用(第1版) (北京:高等教育出版社)第96页]

    [26]

    Yang W X, Hou J M, Lee R K 2008 Phys. Rev. A 77 033838

    [27]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [28]

    Dynes J F, Frogley M D, Beck M, Faist J, Phillips C C 2005 Phys. Rev. Lett. 94 157403

    [29]

    She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208

    [30]

    Hang C, Li Y, Ma L, Huang G X 2006 Phys. Rev. A 74 012319

    [31]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408

    [32]

    Zhang B, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 110501 (in Chinese)[张波, 王登龙, 佘彦超, 张蔚曦2013 62 110501]

    [33]

    Roskos H G, Nuss M C, Shah J, Leo K, Miller D A B, Fox A M, Schmitt-Rink S, Köhler K 1992 Phys. Rev. Lett. 68 2216

  • [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601

    [4]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901

    [5]

    Wang B, Li S J, Chang H, Wu H B, Xie C D, Wang H 2005 Acta Phys. Sin. 54 4136 (in Chinese)[王波, 李淑静, 常宏, 武海斌, 谢常德, 王海2005 54 4136]

    [6]

    Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447

    [7]

    Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666

    [8]

    Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27

    [9]

    Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594

    [10]

    Wu Y, Wen L, Zhu Y 2003 Opt. Lett. 28 631

    [11]

    Chen Y, Bai Z, Huang G 2014 Phys. Rev. A 89 023835

    [12]

    Huang G, Deng L, Payne M G 2005 Phys. Rev. E 72 016617

    [13]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904

    [14]

    Wu H B, Chang H, Ma J, Xie C D, Wang H 2005 Acta Phys. Sin. 54 3632 (in Chinese)[武海斌, 常宏, 马杰, 谢常德, 王海2005 54 3632]

    [15]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [16]

    Yang W X, Hou J M, Lin Y, Lee R K 2009 Phys. Rev. A 79 033825

    [17]

    Paspalakis E, Tsaousidou M, Terzis A F 2006 Phys. Rev. B 73 125344

    [18]

    Li J H 2007 Phys. Rev. B 75 155329

    [19]

    Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. Lett. 95 057401

    [20]

    Asano T, Noda S, Abe T, Sasaki A 1996 Jpn. J. Appl. Phys 35 1285

    [21]

    Yang W X, Lee R K 2008 Opt. Express 16 17161

    [22]

    Neogi A, Yoshida H, Mozume T, Wada O 1999 Opt. Commun. 159 225

    [23]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [24]

    Tang H, Wang D L, She Y C, Ding J W, Xiao S G 2016 Eur. Phys. J. D 70 22

    [25]

    Huang J L, Xu J Z, Xiong Y T 2004 Soliton Conceptions, Theory and Application (1st Ed.) (Beijing:Higher Education Press) p96(in Chinese)[黄景宁, 徐济仲, 熊吟涛2004孤子概念、原理和应用(第1版) (北京:高等教育出版社)第96页]

    [26]

    Yang W X, Hou J M, Lee R K 2008 Phys. Rev. A 77 033838

    [27]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392

    [28]

    Dynes J F, Frogley M D, Beck M, Faist J, Phillips C C 2005 Phys. Rev. Lett. 94 157403

    [29]

    She Y C, Wang D L, Zhang W X, He Z M, Ding J W 2010 J. Opt. Soc. Am. B 27 208

    [30]

    Hang C, Li Y, Ma L, Huang G X 2006 Phys. Rev. A 74 012319

    [31]

    Zhu C J, Huang G X 2009 Phys. Rev. B 80 235408

    [32]

    Zhang B, Wang D L, She Y C, Zhang W X 2013 Acta Phys. Sin. 62 110501 (in Chinese)[张波, 王登龙, 佘彦超, 张蔚曦2013 62 110501]

    [33]

    Roskos H G, Nuss M C, Shah J, Leo K, Miller D A B, Fox A M, Schmitt-Rink S, Köhler K 1992 Phys. Rev. Lett. 68 2216

  • [1] Tan Cong, Wang Deng-Long, Dong Yao-Yong, Ding Jian-Wen. Storage and retrieval of solitons in electromagnetically induced transparent system of V-type three-level diamond nitrogen-vacancy color centers. Acta Physica Sinica, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] Ge Yun-Ran, Zheng Kang, Ding Chun-Ling, Hao Xiang-Ying, Jin Rui-Bo. Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well. Acta Physica Sinica, 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [3] Wang Yin, Zhou Si-Jie, Chen Qiao, Deng Yong-He. Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium. Acta Physica Sinica, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [4] Gao Hai-Yan, Yang Xin-Da, Zhou Bo, He Qing, Wei Lian-Fu. Coupling-induced microwave transmission transparency with quarter-wavelength superconducting resonators. Acta Physica Sinica, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [5] Zhang Yue-Bin, Ma Cheng-Ju, Zhang Yao, Jin Jia-Sheng, Bao Shi-Qian, Li Mi, Li Dong-Ming. Research on analogue of electromagnetically induced transparency effect based on asymmetric structure all-dielectric metamaterial. Acta Physica Sinica, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [6] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [7] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [8] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [9] Jia Yue1\2, Chen Xiao-Han1\2, Zhang Hao1\2, Zhang Lin-Jie1\2, Xiao Lian-Tuan1\2, Jia Suo-Tang1\2Noise transfer characteristics of Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [10] Yang Guang, Wang Jie, Wang Jun-Min. Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra. Acta Physica Sinica, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [11] Ning Ren-Xia, Bao Jie, Jiao Zheng. Wide band electromagnetically induced transparency in graphene metasurface of composite structure. Acta Physica Sinica, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [12] Du Ying-Jie, Xie Xiao-Tao, Yang Zhan-Ying, Bai Jin-Tao. Dark soliton in the system of electromagnetically induced transparency. Acta Physica Sinica, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [13] Bian Cheng-Ling, Zhu Jiang, Lu Jia-Wen, Yan Jia-Lu, Chen Li-Qing, Wang Zeng-Bin, Ou Ze-Yu, Zhang Wei-Ping. Experimental research on retrieval efficiency of atomic spin wave based on electromagnetically induced transparency. Acta Physica Sinica, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [14] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] Lü Chun-Hai, Tan Wen-Ting, Tan Lei. Electromagnetically induced transparency in squeezed vacuum. Acta Physica Sinica, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [16] Li Xiao-Li, Zhang Lian-Shui, Yang Bao-Zhu, Yang Li-Jun. Electromagnetically induced absorption and transparency in a closed lambda-shaped four-level system. Acta Physica Sinica, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [17] Zhang Lian-Shui, Li Xiao-Li, Wang Jian, Yang Li-Jun, Feng Xiao-Min, Li Xiao-Wei, Fu Guang-Sheng. Electromagnetically induced absorption and electromagnetically induced transparency in an optical-radio two-photon coupling configuration. Acta Physica Sinica, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [18] Wang Li, Song Hai-Zhen. Electromagnetically induced absorption in four-level atomic system. Acta Physica Sinica, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
    [19] Yang Li-Jun, Zhang Lian-Shui, Li Xiao-Li, Li Xiao-Wei, Guo Qing-Lin, Han Li, Fu Guang-Sheng. Multi-window frequency-tunable electromagnetically induced transparency. Acta Physica Sinica, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] Sun Feng-Wei, Deng Li, Shou Qian, Liu Lu-Ning, Wen Jin-Hui, Lai Tian-Shu, Lin Wei-Zhu. Femtosecond spectral studies of electron spin injection and relaxation in AlGaAs / GaAs MQW. Acta Physica Sinica, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
Metrics
  • Abstract views:  6135
  • PDF Downloads:  227
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2016
  • Accepted Date:  03 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map