-
The surface dissolution of rock nanopores, caused by the acidic environment, increases the salt concentration of water solution flowing in the nanopores, thereby destroying the surface structure of the rock, which can be found in CO2 geological sequestration and crude oil and shale gas exploration. In this paper, the molecular dynamics method is adopted to study the flow characteristics of water solution in the forsterite (Mg2SiO4) slit nanopores, by which the effects of salt concentration and structure destruction of pore surface on the velocity profiles of water solution confined in nanopores are systematically analyzed. The hydrogen bond density, radial distribution function (RDF) and water density distribution are calculated to explain the changes in viscosity, velocity profiles and interaction between water and nanopore surface. The results show that as the salt concentration increases, the water solution flow in the rock nanopore obeys the Hagen-Poiseuille equation, and the velocity profiles of water solution remain parabolic shape. However, the hydrogen bond network among water molecules becomes denser with salt concentration increasing, which can account for the linear increase in the viscosity of water solution. Besides, the higher salt concentration gives rise to the larger water flow resistance from the pore surface. As a result, with the salt concentration increasing, the maximum of water velocity decreases and the curvature radius of the parabolic velocity profile curve becomes bigger. Moreover, the surface structure destruction in rock nanopores changes the roughness of surface in the flow channel, which enhances the attraction of nanopore surface to H2O. As the structure destruction of nanopore surface deteriorates, the water density near the rough surface moves upward, whereas the velocity of water near the rough surface declines obviously. Interestingly, when the degree of surface structure destruction reaches 50%, a significant negative boundary slipping near the rough surface appears.
-
Keywords:
- rock nanopore /
- rock dissolution /
- molecular dynamics simulation /
- flow
[1] Schrag D P J 2007 Science 315 812
Google Scholar
[2] Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671
Google Scholar
[3] Cunningham A B, Gerlach R, Spangler L, Mitchell A C 2009 Energy Procedia. 1 3245
Google Scholar
[4] Pournik M, Nasr-El-Din H A, Mahmoud M A 2011 SPE Prod. Oper. 26 18
[5] Li Z, Xu Y, Yang L, Guo J, Chen J J 2016 Aust. J. Earth. Sci. 63 503
Google Scholar
[6] Black J R, Carroll S A, Haese R R 2015 Chem. Geol. 399 134
Google Scholar
[7] 黄桥高, 潘光, 宋保维 2014 63 054701
Google Scholar
Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701
Google Scholar
[8] 葛宋, 陈民 2013 工程热 34 1527
Ge S, Chen M 2013 J. Eng. Therm. 34 1527
[9] 杨峰, 宁正福, 胡昌蓬, 王波, 彭凯, 刘慧卿 2013 石油学报 34 301
Google Scholar
Yang F, Ning Z F, Hu C P, Wang B, Peng K, Liu H Q 2013 Acta Petrol. Sin. 34 301
Google Scholar
[10] Eijkel J C, Van Den Berg A J M 2005 Microfluid. Nanofluid. 1 249
Google Scholar
[11] Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (Vol. 29) (Berlin: Springer Science & Business Media) pp13–15
[12] Wang S, Javadpour F, Feng Q H 2016 Fuel. 181 741
Google Scholar
[13] Ho T A, Striolo A 2015 AIChE J. 61 2993
Google Scholar
[14] Marcus Y J 2009 Chem. Rev. 109 1346
Google Scholar
[15] Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H 2019 J. Am. Chem. Soc. 141 4264
Google Scholar
[16] van der Vegt N F, Haldrup K, Roke S, Zheng J, Lund M, Bakker H 2016 Chem. Rev. 116 7626
Google Scholar
[17] Aryal D, Ganesan V 2018 ACS Macro Lett. 7 739
Google Scholar
[18] 杨倩 2018 博士学位论文 (成都: 西南交通大学)
Yang Q 2018 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)
[19] 张烨, 张冉, 常青, 李烨 2019 68 124702
Google Scholar
Zhang Y, Zhang R, Chang Q, Li H, 2019 Acta Phys. Sin. 68 124702
Google Scholar
[20] Rahmatipour H, Azimian A-R, Atlaschian O 2017 Physica A 465 159
Google Scholar
[21] 梅涛, 陈独秀, 杨历, 王坤, 苗瑞灿 2019 68 094701
Google Scholar
Mei T, Chen D X, Yang L, Wang K, Miao C C, 2019 Acta Phys. Sin. 68 094701
Google Scholar
[22] 南怡伶, 孔宪, 李继鹏, 卢滇楠 2017 化工学报 68 1786
Nan Y L, Kong X, Li J P, Lu D N 2017 J. Chem. Ind. Eng. (China) 68 1786
[23] 王胜, 徐进良, 张龙艳 2017 66 204704
Google Scholar
Wang S, Xu J L, Zhang L Y 2017 Acta Phys. Sin. 66 204704
Google Scholar
[24] 张冉, 谢文佳, 常青 2018 67 084701
Google Scholar
Zhang R, Xie W J, Chang Q 2018 Acta Phys. Sin. 67 084701
Google Scholar
[25] Markesteijn A, Hartkamp R, Luding S, Westerweel J 2012 J. Chem. Phys 136 134104
Google Scholar
[26] Yoshida H, Bocquet L 2016 J. Chem. Phys 144 234701
Google Scholar
[27] Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2019 Nano Res. 12 587
Google Scholar
[28] Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012 Science 335 442
Google Scholar
[29] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979
Google Scholar
[30] Zhao L L, Ji J, Tao L, Lin S C 2016 Langmuir. 32 9188
Google Scholar
[31] Ross D J K, Bustin R M 2009 Mar. Pet. Geol. 26 916
Google Scholar
[32] Kerisit S, Weare J H, Felmy A R 2012 Geochim. Cosmochim. Acta 84 137
Google Scholar
[33] Wang J, Kalinichev A G, Kirkpatrick R J 2006 Geochim. Cosmochim. Acta 70 562
Google Scholar
[34] Cygan R T, Liang J-J, Kalinichev A G 2004 J. Phys. Chem. B. 108 1255
Google Scholar
[35] Yuet P K, Blankschtein D 2010 J. Phys. Chem. B 114 13786
Google Scholar
[36] Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D 2011 J. Phys. Chem. B 115 6076
Google Scholar
[37] Verlet L 1967 Phys. Rev. 159 98
Google Scholar
[38] Delhommelle J, Philippe M 2001 Mol. Phys. 99 619
Google Scholar
[39] Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089
Google Scholar
[40] FrantzDale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205
Google Scholar
[41] Alvarez N J, Uguz A K 2013 Phys. Fluids 25 7336
[42] Span R, Wagner W J 1996 J. Phys. Chem. Ref. Data 25 1509
Google Scholar
[43] Liu L, Du J G, Zhao J J, Liu H, Gao H L, Chen Y X 2009 Phys. Earth Planet. 176 89
Google Scholar
-
图 3 (a)纯水和MgCl2含盐水中以0.32 nm半径的水合壳结构示意图; (b)不同MgCl2浓度下纳米级镁橄榄石孔隙内纯水和含盐水的+Z向速度分布
Figure 3. (a) Snapshots for the solvation shell with a radius of 0.4 nm in pure water and MgCl2 solution, (b) the velocity profiles in the +Z direction of water solution in the forsterite nanopore with different MgCl2 concentrations.
-
[1] Schrag D P J 2007 Science 315 812
Google Scholar
[2] Liu B, Qi C, Zhao X, Teng G, Zhao L, Zheng H, Zhan K, Shi J 2018 J. Phys. Chem. C 122 26671
Google Scholar
[3] Cunningham A B, Gerlach R, Spangler L, Mitchell A C 2009 Energy Procedia. 1 3245
Google Scholar
[4] Pournik M, Nasr-El-Din H A, Mahmoud M A 2011 SPE Prod. Oper. 26 18
[5] Li Z, Xu Y, Yang L, Guo J, Chen J J 2016 Aust. J. Earth. Sci. 63 503
Google Scholar
[6] Black J R, Carroll S A, Haese R R 2015 Chem. Geol. 399 134
Google Scholar
[7] 黄桥高, 潘光, 宋保维 2014 63 054701
Google Scholar
Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701
Google Scholar
[8] 葛宋, 陈民 2013 工程热 34 1527
Ge S, Chen M 2013 J. Eng. Therm. 34 1527
[9] 杨峰, 宁正福, 胡昌蓬, 王波, 彭凯, 刘慧卿 2013 石油学报 34 301
Google Scholar
Yang F, Ning Z F, Hu C P, Wang B, Peng K, Liu H Q 2013 Acta Petrol. Sin. 34 301
Google Scholar
[10] Eijkel J C, Van Den Berg A J M 2005 Microfluid. Nanofluid. 1 249
Google Scholar
[11] Karniadakis G, Beskok A, Aluru N 2006 Microflows and Nanoflows: Fundamentals and Simulation (Vol. 29) (Berlin: Springer Science & Business Media) pp13–15
[12] Wang S, Javadpour F, Feng Q H 2016 Fuel. 181 741
Google Scholar
[13] Ho T A, Striolo A 2015 AIChE J. 61 2993
Google Scholar
[14] Marcus Y J 2009 Chem. Rev. 109 1346
Google Scholar
[15] Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H 2019 J. Am. Chem. Soc. 141 4264
Google Scholar
[16] van der Vegt N F, Haldrup K, Roke S, Zheng J, Lund M, Bakker H 2016 Chem. Rev. 116 7626
Google Scholar
[17] Aryal D, Ganesan V 2018 ACS Macro Lett. 7 739
Google Scholar
[18] 杨倩 2018 博士学位论文 (成都: 西南交通大学)
Yang Q 2018 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese)
[19] 张烨, 张冉, 常青, 李烨 2019 68 124702
Google Scholar
Zhang Y, Zhang R, Chang Q, Li H, 2019 Acta Phys. Sin. 68 124702
Google Scholar
[20] Rahmatipour H, Azimian A-R, Atlaschian O 2017 Physica A 465 159
Google Scholar
[21] 梅涛, 陈独秀, 杨历, 王坤, 苗瑞灿 2019 68 094701
Google Scholar
Mei T, Chen D X, Yang L, Wang K, Miao C C, 2019 Acta Phys. Sin. 68 094701
Google Scholar
[22] 南怡伶, 孔宪, 李继鹏, 卢滇楠 2017 化工学报 68 1786
Nan Y L, Kong X, Li J P, Lu D N 2017 J. Chem. Ind. Eng. (China) 68 1786
[23] 王胜, 徐进良, 张龙艳 2017 66 204704
Google Scholar
Wang S, Xu J L, Zhang L Y 2017 Acta Phys. Sin. 66 204704
Google Scholar
[24] 张冉, 谢文佳, 常青 2018 67 084701
Google Scholar
Zhang R, Xie W J, Chang Q 2018 Acta Phys. Sin. 67 084701
Google Scholar
[25] Markesteijn A, Hartkamp R, Luding S, Westerweel J 2012 J. Chem. Phys 136 134104
Google Scholar
[26] Yoshida H, Bocquet L 2016 J. Chem. Phys 144 234701
Google Scholar
[27] Xu J, Zhu C, Wang Y, Li H, Huang Y, Shen Y, Francisco J S, Zeng X C, Meng S 2019 Nano Res. 12 587
Google Scholar
[28] Nair R, Wu H, Jayaram P, Grigorieva I, Geim A 2012 Science 335 442
Google Scholar
[29] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979
Google Scholar
[30] Zhao L L, Ji J, Tao L, Lin S C 2016 Langmuir. 32 9188
Google Scholar
[31] Ross D J K, Bustin R M 2009 Mar. Pet. Geol. 26 916
Google Scholar
[32] Kerisit S, Weare J H, Felmy A R 2012 Geochim. Cosmochim. Acta 84 137
Google Scholar
[33] Wang J, Kalinichev A G, Kirkpatrick R J 2006 Geochim. Cosmochim. Acta 70 562
Google Scholar
[34] Cygan R T, Liang J-J, Kalinichev A G 2004 J. Phys. Chem. B. 108 1255
Google Scholar
[35] Yuet P K, Blankschtein D 2010 J. Phys. Chem. B 114 13786
Google Scholar
[36] Zhao L, Lin S, Mendenhall J D, Yuet P K, Blankschtein D 2011 J. Phys. Chem. B 115 6076
Google Scholar
[37] Verlet L 1967 Phys. Rev. 159 98
Google Scholar
[38] Delhommelle J, Philippe M 2001 Mol. Phys. 99 619
Google Scholar
[39] Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089
Google Scholar
[40] FrantzDale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205
Google Scholar
[41] Alvarez N J, Uguz A K 2013 Phys. Fluids 25 7336
[42] Span R, Wagner W J 1996 J. Phys. Chem. Ref. Data 25 1509
Google Scholar
[43] Liu L, Du J G, Zhao J J, Liu H, Gao H L, Chen Y X 2009 Phys. Earth Planet. 176 89
Google Scholar
Catalog
Metrics
- Abstract views: 7456
- PDF Downloads: 98
- Cited By: 0