-
At present, solar cells are the main sources for spacecrafts. For a long time the bulk of the space power installations has been the solar arrays based on single junction silicon and gallium arsenide solar cells. In recent years a trend has been the active use of triple-junction GaAs solar cell with higher efficiency instead of single junction solar cells. One of the most important characteristics of solar cells used in spacecrafts is the resistance to radiation damages caused by high energy particles of the near-Earth space. According to the spectral response of triple-junction GaAs solar cell and the damage characteristics of the current under the condition of electron irradiation, the physical mechanism of cell attenuation can be determined: the current degradation originates mainly from the GaInAs subcells. These damages form additional centers of nonradiative recombination, which results in the reduction of the minority charge carrier diffusion lengths and in degradation of the solar cells photocurrent.The radiation damage caused by the electron irradiation will shorten the diffusion length of the base region and affect the collection of photo generated carriers. The ways of improving absorption of long wavelength light in GaInAs subcells with a thin base in using the distributed Bragg reflector can be investigated by the mathematical simulation method based on calculating the light propagation in a multilayer structure by means of the TFCalc software which can design optical structure. To estimate the validity of these methods for solar cells structures with distributed Bragg reflector, the spectral dependences of the photoresponse and the reflection coefficient with different base thickness values are calculated and compared with experimental results. Based on the physical mechanism of the degradation, the thickness of middle subcell base layer is reduced, and an appropriate structure of the distributed Bragg reflector is simulated by the TFCalc software. As a result, the new structure solar cells are that the thickness of the base layer is 1.5 m compared with the different middle subcell thickness values, and the distributed Bragg reflector structure with 15 paris of the Al0.1Ga0.9As/Al0.9Ga0.1As with 850 nm central wavelength is embedded in the middle subcell of the base layer, the distributed Bragg reflector has a highest reflectivity of more than 97% in the actual test, and a bandwidth of 94 nm, which can satisfy design requirement. After irradiating the new structure of solar cells, the decay of its short-circuited current is reduced by 50% compared with that of the original structure, and the remaining efficiency factor is increased by 2.3%.
-
Keywords:
- distributed Bragg reflector /
- triple-junction solar cell /
- irradiation damage /
- diffusion length
[1] Messenger S R, Jackson E M, Warner J H, Walters R J 2010 Proceedings of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hi, USA, June 20-25, 2010 p1106
[2] Summers G P, Messenger S A, Walters R J, Burke E A 2001 Progr. Photovoltaics Res. Applicat. 9 103
[3] Takamoto T, Agui T, Kamimura K, Kaneiwa M 2003 3rd World Conference on Phorovolfaic Energy Conversion Osaka, Japan, May 11-18, 2003 p581
[4] Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]
[5] Wu Y Y, Yue L, Hu J M, Xiao J D, Chen M B, Qian Y, Yang D Z, He S Y 2011 Spacecraft Environment Engineering 28 329 (in Chinese) [吴宜勇, 岳龙, 胡建民, 肖景东, 陈鸣波, 钱勇, 杨德庄, 何世禹 2011 航天器环境工程 28 329]
[6] Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101 (in Chinese) [岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 蓝慕杰 2014 63 188101]
[7] Hu J M, Wu Y Y, He S, Qian Y, Chen M B, Yang D Z 2010 Acta Energiae Sol. Sin. 31 1568 (in Chinese) [胡建民, 吴宜勇, 何松, 钱勇, 陈鸣波, 杨德庄 2010 太阳能学报 31 1568]
[8] Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802 (in Chinese) [齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802]
[9] Lantratov V, Emelyanov V, Kalyuzhnyy N, Mintairov S, Shvarts M 2010 Adv. Sci.Technol. 74 225
[10] Gao W, Gao H, Xu J, Zhang B, Liu C X, Wang B M, Mu J 2014 Chinese Journal of Power Sources 5 841 (in Chinese) [高伟, 高慧, 许军, 张宝, 刘长喜, 王保民, 穆杰 2014 电源技术 5 841]
[11] Hu J M, Wu Y Y, Yang D Z, He S Y 2008 Nucl. Instr. Meth. Phys. Res. B 266 3577
[12] Hu J M 2009 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese) [胡建民 2009 博士学位论文(哈尔滨:哈尔滨工业大学)]
[13] Sato S I, Ohshima T, Imaizumi M 2009 J. Appl.Phys. 105 044504
[14] An Q L, Cao Q S, Li G X, Liu B Y, Zhang Z K 1984 The Principle and Technology of Solar Cell (Shanghai: Science and Technology of China Press) pp91-94 (in Chinese) [安其霖, 曹国琛, 李国欣, 刘宝元, 张忠奎 1984 太阳电池原理与工艺 (上海:科学技术出版社) 第91-94页]
[15] Bahrami A, Mohammadnejad S, Abkena N J 2014 Chin. Phys. B 23 28803
-
[1] Messenger S R, Jackson E M, Warner J H, Walters R J 2010 Proceedings of the 35th IEEE Photovoltaic Specialists Conference Honolulu, Hi, USA, June 20-25, 2010 p1106
[2] Summers G P, Messenger S A, Walters R J, Burke E A 2001 Progr. Photovoltaics Res. Applicat. 9 103
[3] Takamoto T, Agui T, Kamimura K, Kaneiwa M 2003 3rd World Conference on Phorovolfaic Energy Conversion Osaka, Japan, May 11-18, 2003 p581
[4] Wu Y Y, Yue L, Hu J M, Lan M J, Xiao J D, Yang D Z, He S Y, Zhang Z W, Wang X C, Qian Y, Chen M B 2011 Acta Phys. Sin. 60 098110 (in Chinese) [吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波 2011 60 098110]
[5] Wu Y Y, Yue L, Hu J M, Xiao J D, Chen M B, Qian Y, Yang D Z, He S Y 2011 Spacecraft Environment Engineering 28 329 (in Chinese) [吴宜勇, 岳龙, 胡建民, 肖景东, 陈鸣波, 钱勇, 杨德庄, 何世禹 2011 航天器环境工程 28 329]
[6] Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101 (in Chinese) [岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 蓝慕杰 2014 63 188101]
[7] Hu J M, Wu Y Y, He S, Qian Y, Chen M B, Yang D Z 2010 Acta Energiae Sol. Sin. 31 1568 (in Chinese) [胡建民, 吴宜勇, 何松, 钱勇, 陈鸣波, 杨德庄 2010 太阳能学报 31 1568]
[8] Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802 (in Chinese) [齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802]
[9] Lantratov V, Emelyanov V, Kalyuzhnyy N, Mintairov S, Shvarts M 2010 Adv. Sci.Technol. 74 225
[10] Gao W, Gao H, Xu J, Zhang B, Liu C X, Wang B M, Mu J 2014 Chinese Journal of Power Sources 5 841 (in Chinese) [高伟, 高慧, 许军, 张宝, 刘长喜, 王保民, 穆杰 2014 电源技术 5 841]
[11] Hu J M, Wu Y Y, Yang D Z, He S Y 2008 Nucl. Instr. Meth. Phys. Res. B 266 3577
[12] Hu J M 2009 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese) [胡建民 2009 博士学位论文(哈尔滨:哈尔滨工业大学)]
[13] Sato S I, Ohshima T, Imaizumi M 2009 J. Appl.Phys. 105 044504
[14] An Q L, Cao Q S, Li G X, Liu B Y, Zhang Z K 1984 The Principle and Technology of Solar Cell (Shanghai: Science and Technology of China Press) pp91-94 (in Chinese) [安其霖, 曹国琛, 李国欣, 刘宝元, 张忠奎 1984 太阳电池原理与工艺 (上海:科学技术出版社) 第91-94页]
[15] Bahrami A, Mohammadnejad S, Abkena N J 2014 Chin. Phys. B 23 28803
Catalog
Metrics
- Abstract views: 7686
- PDF Downloads: 356
- Cited By: 0