Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of resting state functional magnetic resonance imaging signal complexity of adult major depressive disorder based on fuzzy approximate entropy

Yang Xiao-Jing Yang Yang Li Huai-Zhou Zhong Ning

Citation:

Analysis of resting state functional magnetic resonance imaging signal complexity of adult major depressive disorder based on fuzzy approximate entropy

Yang Xiao-Jing, Yang Yang, Li Huai-Zhou, Zhong Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Major depressive disorder (MDD) is a kind of mental disease which has characteristics of the low mood,sense of worthless,less interest in the surrounding things,sadness or hopeless,slow thinking,intelligence,language,action,etc. The aim of this research is to find the differences between entropy values and ages,genders of MDD patients,MDD patients and healthy controls.Twenty-two MDD patients (male 11;age 18-65) and their matched healthy controls in gender,age,and education are examined by analyzing (blood oxygenation level dependent-functional magnetic resonance imaging,BOLD-fMRI) signals from nonlinear complexity perspective.As the BOLD-fMRI signals have limited time resolution,so they are very difficult to quantify the complexities of fMRI signals.We extract the corresponding signals from the fMRI signals.The complexities of the age,gender,MDD patients and healthy controls can be predicted by the proposed approach.However,information redundancy and other issues may exist in non-linear dynamic signals. These issues will cause an increase in computational complexity or a decrease in computational accuracy.To solve the above problems,we propose a method of fuzzy approximate entropy (fApEn),and compare it with sample entropy (SampEn).The addition and subtraction under different emotional stimuli as a multi-task are used to coordinate brain sense with motion control.The 12-channel fMRI signals are obtained involving the BOLD signals on resting signals (about 24 s).The methods of the fApEn and SampEn are proposed to deal with the BOLD-fMRI signals in the different ages and genders,and those between MDD patients and healthy controls from the differences between fApEn and SampEn of different genders,main effect and interaction effect analysis of fApEn and SampEn measures, regression curve between entropy and age of the whole sample,correlations of fApEn and SampEn with age,fApEn-age correlation and magnitude in gray matter and white matter,multiple regression analysis of fApEn with age for the whole sample,also the receiver operating characteristic analyses of fApEn and SampEn,the relationship between fAPEn and N aspects.The results show that 1) the complexities of the resting state fMRI signals measured are consistent with those from the Goldberger/Lipsitz model:the more the health,the greater the complexity is;2) the mean whole brain fApEn demonstrates significant negative correlation (r=-0.512,P0.001) with age,SampEn produces a non-significant negative correlation (r=-0.102,p=0.412),and fApEn also demonstrates a significant (P0.05) negative correlation with age-region (frontal,parietal,limbic,temporal and cerebellum parietal lobes),there is non-significant region between the SampEn maps and age;3) the fuzzy approximate entropy values of major depressive disorder patients are lower than those of healthy controls during resting.These results support the Goldberger/Lipsitz model,and the results also show that the fApEn is a new effective method to analyze the complexity of BOLD-fMRI signals.
      Corresponding author: Yang Xiao-Jing, yangxj84@163.com
    • Funds: Project supported by the National Basic Research Program of China(Grant No. 2014CB744600) and the National Natural Science Foundation of China(Grant Nos. 61272345, 61105118).
    [1]

    Lipsitz L A 2004 Sci. Aging Knowl. Environ. 16 7

    [2]

    Sokunbi M O, Staff R T, Waiter G D, Ahearn T S, Fox H C, Deary I J 2011 IEEE Trans. Biomed. Eng. 58 3206

    [3]

    Pritchard W S, Duke D W, Coburn K L, Moore N C, Tucker K A, Jann M W 1994 Electroenceph. Clin. Neurophysiol. 91 118

    [4]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [5]

    Eckmann J P, Ruelle D 1992 Physica D 56 185

    [6]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [7]

    Bertolaccini M, Bussolati C, Padovini G 1978 IEEE Trans. Biomed. Eng. 25 159

    [8]

    Pesin Y B 1977 Russ. Math. Surv. 32 55

    [9]

    Kaplan J, Yorke J 1979 Chaotic Behavior of Multidimensional Difference Equations (Berlin Heidelberg:Springer) 17204

    [10]

    Kolmogorov A N 1958 Doki. Akad. Nauk. 119 861

    [11]

    Pincus S 1995 Chaos 5 110

    [12]

    Pincus S M 2001 Ann. NY. Acad. Sci. 954 245

    [13]

    Pincus S M 1991 Proc. Natl. Acad. Sci. USA 88 2297

    [14]

    Wang Z, Li Y, Childress A R, Detre J A 2014 PLoS ONE 9 e89948

    [15]

    Xie H B, Guo J Y, Zheng Y P 2010 Ann. Biomed. Eng. 38 1483

    [16]

    Li Q, Wang T Y, Leng Y G, He G Y, He H L 2007 Acta Phys. Sin. 56 6803(in Chinese)[李强, 王太勇, 冷永刚, 何改云, 何慧龙2007 56 6803]

    [17]

    Bosl W, Tierney A, Tager-Flusberg H, Nelson C 2011 BMC Med. 9 18

    [18]

    Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H 2011 Clin. Neurophysiol. 122 2375

    [19]

    Ahmadlou M, Adeli H, Adeli A 2010 J. Clin. Neurophysiol. 27 328

    [20]

    Liu D Z, Wang J, Li J, Li Y, Xu W M, Zhao X 2014 Acta Phys. Sin. 63 198703(in Chinese)[刘大钊, 王俊, 李锦, 李瑜, 许文敏, 赵筱2014 63 198703]

    [21]

    Wang K M, Zhong N, Zhou H Y 2014 Acta Phys. Sin. 63 178701(in Chinese)[王凯明, 钟宁, 周海燕2014 63 178701]

    [22]

    Gomez C, Abasolo D, Poza J, Fernandez A, Hornero R 2010 Conf. Proc. IEEE Eng. Med. Biol. Soc. 75 2379

    [23]

    Richman J S, Moorman J R 2000 Am. J. Physiol.-Heart Circul Physiol. 278 H2039

    [24]

    Abasolo D, Hornero R, Espino P, álvarez D, Poza J 2006 Physiol. Meas. 27 241

    [25]

    Gomez C, Poza J, Garcia M, Fernandez, Hornero R 2011 Regularity Analysis of Spontaneous MEG Activity in Attention-Deficit/Hyperactivity Disorder (IEEE:Proceedings of the 33rd Annual International Conference of the IEEE EMBS) p1765

    [26]

    Sokunbi M O 2014 Front. Neuroinform. 8 69

    [27]

    Sokunbi M O, Gradin V B, Waiter G D, Cameron G G, Ahearn T S, Murray A D, Steele D J, Staff R T 2014 PLoS ONE 9 e95146

    [28]

    Yang A C, Huang C C, Yeh H L, Liu M E, Hong C J, Tu P C 2013 Neurobiol. Aging 34 428

    [29]

    Sokunbi M O, Fung W, Sawlani V, Choppin S, Linden D E J, Thome J 2013 Neuroimaging 214 341

    [30]

    Chen W, Wang Z, Xie H, Yu W 2007 IEEE Trans. Neural Syst. Rehabil. Eng. 15 266

    [31]

    Sun R, Song R, Tong K Y 2014 IEEE Trans. Neural Syst. Rehab. Eng. 22 1013

    [32]

    Kumar Y, Dewal M L, Anand R S 2014 Neurocomputing 133 271

    [33]

    Logothetis N K, Wandell B A 2004 Annu. Rev. Physiol. 66 735

    [34]

    Gawryluk J R, Mazerolle E L, D'Arcy R C N 2014 Front. Neurosci. 8 239

    [35]

    Goldberger A L 1996 Lancet 347 1312

    [36]

    Goldberger A L 1997 Perspect. Biol. Med. 40 543

    [37]

    Goldberger A L, Peng C, Lipsitz L A 2002 Neurobiol. Aging 23 23

    [38]

    Deary I J, Corley J, Gow A J, Harris SE, Houlihan L M, Marioni R E 2009 Br. Med. Bull. 92 135

    [39]

    Yao Y, Lu W L, Xu B, Li C B, Lin C P, Waxman D 2013 Sci. Rep. 3 2853

    [40]

    Anokhin A P, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F 1996 Electroencephalogr. Clin. Neurophysiol. 99 63

    [41]

    Zadeh L A 1965 Inform. Control 8 338

    [42]

    Xiong G, Zhang L, Liu H, Zou H, Guo W 2010 J. Zhejiang University-Sci. A(Appl. Phys. Eng.) 11 270

    [43]

    Fernández A, Hornero R, Gómez C, Turrero A, Gil-Gregorio P, Matias-Santos J, Ortiz T 2010 Alzheimer Dis. Assoc. Disord. 24 182

    [44]

    Fernandez A, Zuluaga P, Abasolo D, Gomez C, Serra A, Mendez M A 2012 Clin. Neurophysiol. 123 2154

    [45]

    Liu C Y, Krishnan A P, Yan L, Smith R X, Kilroy E, Alger J R, Ringman J M, Wang D J 2013 J. Magn. Reson. Imaging 38 36

    [46]

    Thomas B P, Liu P, Park D C, van Osch M J, Lu H 2014 J. Cereb. Blood Flow Metab. 34 242

    [47]

    Lu H, Xu F, Rodrigue K M, Kennedy K M, Cheng Y, Flicker B 2011 Cereb. Cortex 21 1426

    [48]

    Samanez-Larkin G R, D'Esposito M 2008 Soc. Cogn. Affect. Neurosci. 3 290

    [49]

    Tsvetanov K A, Henson R N A, Tyler L K, Davis S W, Shafto M A, Taylor J R 2015 Hum. Brain Mapp. 36 2248

    [50]

    Liu C, Zheng D, Li P, Zhao L, Liu C, Murray A 2013 Proceedings of the IEEE Computing in Cardiology Conference(CinC) Zaragoza, Spain, September 22-25, 2013p39

    [51]

    Zweig M H, Campbell G 1993 Clin. Chem. 39 561

    [52]

    Pincus S M, Goldberger A L 1994 Am. J. Physiol.-Heart Circul Physiol. 266 H1643

  • [1]

    Lipsitz L A 2004 Sci. Aging Knowl. Environ. 16 7

    [2]

    Sokunbi M O, Staff R T, Waiter G D, Ahearn T S, Fox H C, Deary I J 2011 IEEE Trans. Biomed. Eng. 58 3206

    [3]

    Pritchard W S, Duke D W, Coburn K L, Moore N C, Tucker K A, Jann M W 1994 Electroenceph. Clin. Neurophysiol. 91 118

    [4]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [5]

    Eckmann J P, Ruelle D 1992 Physica D 56 185

    [6]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [7]

    Bertolaccini M, Bussolati C, Padovini G 1978 IEEE Trans. Biomed. Eng. 25 159

    [8]

    Pesin Y B 1977 Russ. Math. Surv. 32 55

    [9]

    Kaplan J, Yorke J 1979 Chaotic Behavior of Multidimensional Difference Equations (Berlin Heidelberg:Springer) 17204

    [10]

    Kolmogorov A N 1958 Doki. Akad. Nauk. 119 861

    [11]

    Pincus S 1995 Chaos 5 110

    [12]

    Pincus S M 2001 Ann. NY. Acad. Sci. 954 245

    [13]

    Pincus S M 1991 Proc. Natl. Acad. Sci. USA 88 2297

    [14]

    Wang Z, Li Y, Childress A R, Detre J A 2014 PLoS ONE 9 e89948

    [15]

    Xie H B, Guo J Y, Zheng Y P 2010 Ann. Biomed. Eng. 38 1483

    [16]

    Li Q, Wang T Y, Leng Y G, He G Y, He H L 2007 Acta Phys. Sin. 56 6803(in Chinese)[李强, 王太勇, 冷永刚, 何改云, 何慧龙2007 56 6803]

    [17]

    Bosl W, Tierney A, Tager-Flusberg H, Nelson C 2011 BMC Med. 9 18

    [18]

    Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring H 2011 Clin. Neurophysiol. 122 2375

    [19]

    Ahmadlou M, Adeli H, Adeli A 2010 J. Clin. Neurophysiol. 27 328

    [20]

    Liu D Z, Wang J, Li J, Li Y, Xu W M, Zhao X 2014 Acta Phys. Sin. 63 198703(in Chinese)[刘大钊, 王俊, 李锦, 李瑜, 许文敏, 赵筱2014 63 198703]

    [21]

    Wang K M, Zhong N, Zhou H Y 2014 Acta Phys. Sin. 63 178701(in Chinese)[王凯明, 钟宁, 周海燕2014 63 178701]

    [22]

    Gomez C, Abasolo D, Poza J, Fernandez A, Hornero R 2010 Conf. Proc. IEEE Eng. Med. Biol. Soc. 75 2379

    [23]

    Richman J S, Moorman J R 2000 Am. J. Physiol.-Heart Circul Physiol. 278 H2039

    [24]

    Abasolo D, Hornero R, Espino P, álvarez D, Poza J 2006 Physiol. Meas. 27 241

    [25]

    Gomez C, Poza J, Garcia M, Fernandez, Hornero R 2011 Regularity Analysis of Spontaneous MEG Activity in Attention-Deficit/Hyperactivity Disorder (IEEE:Proceedings of the 33rd Annual International Conference of the IEEE EMBS) p1765

    [26]

    Sokunbi M O 2014 Front. Neuroinform. 8 69

    [27]

    Sokunbi M O, Gradin V B, Waiter G D, Cameron G G, Ahearn T S, Murray A D, Steele D J, Staff R T 2014 PLoS ONE 9 e95146

    [28]

    Yang A C, Huang C C, Yeh H L, Liu M E, Hong C J, Tu P C 2013 Neurobiol. Aging 34 428

    [29]

    Sokunbi M O, Fung W, Sawlani V, Choppin S, Linden D E J, Thome J 2013 Neuroimaging 214 341

    [30]

    Chen W, Wang Z, Xie H, Yu W 2007 IEEE Trans. Neural Syst. Rehabil. Eng. 15 266

    [31]

    Sun R, Song R, Tong K Y 2014 IEEE Trans. Neural Syst. Rehab. Eng. 22 1013

    [32]

    Kumar Y, Dewal M L, Anand R S 2014 Neurocomputing 133 271

    [33]

    Logothetis N K, Wandell B A 2004 Annu. Rev. Physiol. 66 735

    [34]

    Gawryluk J R, Mazerolle E L, D'Arcy R C N 2014 Front. Neurosci. 8 239

    [35]

    Goldberger A L 1996 Lancet 347 1312

    [36]

    Goldberger A L 1997 Perspect. Biol. Med. 40 543

    [37]

    Goldberger A L, Peng C, Lipsitz L A 2002 Neurobiol. Aging 23 23

    [38]

    Deary I J, Corley J, Gow A J, Harris SE, Houlihan L M, Marioni R E 2009 Br. Med. Bull. 92 135

    [39]

    Yao Y, Lu W L, Xu B, Li C B, Lin C P, Waxman D 2013 Sci. Rep. 3 2853

    [40]

    Anokhin A P, Birbaumer N, Lutzenberger W, Nikolaev A, Vogel F 1996 Electroencephalogr. Clin. Neurophysiol. 99 63

    [41]

    Zadeh L A 1965 Inform. Control 8 338

    [42]

    Xiong G, Zhang L, Liu H, Zou H, Guo W 2010 J. Zhejiang University-Sci. A(Appl. Phys. Eng.) 11 270

    [43]

    Fernández A, Hornero R, Gómez C, Turrero A, Gil-Gregorio P, Matias-Santos J, Ortiz T 2010 Alzheimer Dis. Assoc. Disord. 24 182

    [44]

    Fernandez A, Zuluaga P, Abasolo D, Gomez C, Serra A, Mendez M A 2012 Clin. Neurophysiol. 123 2154

    [45]

    Liu C Y, Krishnan A P, Yan L, Smith R X, Kilroy E, Alger J R, Ringman J M, Wang D J 2013 J. Magn. Reson. Imaging 38 36

    [46]

    Thomas B P, Liu P, Park D C, van Osch M J, Lu H 2014 J. Cereb. Blood Flow Metab. 34 242

    [47]

    Lu H, Xu F, Rodrigue K M, Kennedy K M, Cheng Y, Flicker B 2011 Cereb. Cortex 21 1426

    [48]

    Samanez-Larkin G R, D'Esposito M 2008 Soc. Cogn. Affect. Neurosci. 3 290

    [49]

    Tsvetanov K A, Henson R N A, Tyler L K, Davis S W, Shafto M A, Taylor J R 2015 Hum. Brain Mapp. 36 2248

    [50]

    Liu C, Zheng D, Li P, Zhao L, Liu C, Murray A 2013 Proceedings of the IEEE Computing in Cardiology Conference(CinC) Zaragoza, Spain, September 22-25, 2013p39

    [51]

    Zweig M H, Campbell G 1993 Clin. Chem. 39 561

    [52]

    Pincus S M, Goldberger A L 1994 Am. J. Physiol.-Heart Circul Physiol. 266 H1643

  • [1] Li Wei-Jia, Shen Xiao-Hong, Li Ya-An. Unbiased multivariate multiscale sample entropy. Acta Physica Sinica, 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [2] Study of Multiscale Entropy Model to Evaluate the Cognitive Behavior of Healthy Elderly People Based on Resting State Functional Magnetic Resonance Imaging. Acta Physica Sinica, 2020, (): 008700. doi: 10.7498/aps.69.20200051
    [3] Zhang Fu-Yi, Ge Man-Ling, Guo Zhi-Tong, Xie Chong, Yang Ze-Kun, Song Zi-Bo. Study of multiscale entropy model to evaluate the cognitive behavior of healthy elderly people based on resting state functional magnetic resonance imaging. Acta Physica Sinica, 2020, 69(10): 108703. doi: 10.7498/aps.69.20200050
    [4] Lei Min, Meng Guang, Zhang Wen-Ming, Nilanjan Sarkar. Sample entropy of electroencephalogram for children with autism based on virtual driving game. Acta Physica Sinica, 2016, 65(10): 108701. doi: 10.7498/aps.65.108701
    [5] Guo Jia-Liang, Zhong Ning, Ma Xiao-Meng, Zhang Ming-Hui, Zhou Hai-Yan. Sample entropy analysis of electroencephalogram based on the two-dimensional feature of amplitude and period. Acta Physica Sinica, 2016, 65(19): 190501. doi: 10.7498/aps.65.190501
    [6] Zhu Li, Deng Juan, Wu Jian-Hua, Zhou Nan-Run. Experimental analysis of auditory mechanism of neural phase-locking based on sample entropy. Acta Physica Sinica, 2015, 64(18): 184302. doi: 10.7498/aps.64.184302
    [7] Huang Xiao-Lin, Huo Cheng-Yu, Si Jun-Feng, Liu Hong-Xing. Application of equiprobable symbolization sample entropy to electroencephalography analysis. Acta Physica Sinica, 2014, 63(10): 100503. doi: 10.7498/aps.63.100503
    [8] Wang Kai-Ming, Zhong Ning, Zhou Hai-Yan. Activity analysis of depression electroencephalogram based on modified power spectral entropy. Acta Physica Sinica, 2014, 63(17): 178701. doi: 10.7498/aps.63.178701
    [9] Li Peng, Liu Cheng-Yu, Li Li-Ping, Ji Li-Zhen, Yu Shou-Yuan, Liu Chang-Chun. Multiscale multivariate fuzzy entropy analysis. Acta Physica Sinica, 2013, 62(12): 120512. doi: 10.7498/aps.62.120512
    [10] Liu Tie-Bing, Yao Wen-Po, Ning Xin-Bao, Ni Huang-Jing, Wang Jun. The base scale entropy analysis of fMRI. Acta Physica Sinica, 2013, 62(21): 218704. doi: 10.7498/aps.62.218704
    [11] Sun Ke-Hui, He Shao-Bo, Yin Lin-Zi, Duo Li-Kun. Application of FuzzyEn algorithm to the analysis of complexity of chaotic sequence. Acta Physica Sinica, 2012, 61(13): 130507. doi: 10.7498/aps.61.130507
    [12] Jin Hong-Mei, He Wen-Ping, Hou Wei, Zhang Da-Quan. Effects of different trends on moving cut data-approximate entropy. Acta Physica Sinica, 2012, 61(6): 069201. doi: 10.7498/aps.61.069201
    [13] Jin Hong-Mei, He Wen-Ping, Zhang Wen, Feng Ai-Xia, Hou Wei. Effect of noises on moving cut data-approximate entropy. Acta Physica Sinica, 2012, 61(12): 129202. doi: 10.7498/aps.61.129202
    [14] Chen Xiao-Jun, Li Zan, Bai Bao-Ming, Cai Jue-Ping. New complexity metric of chaotic pseudorandom sequences using fuzzy relationship entropy. Acta Physica Sinica, 2011, 60(6): 064215. doi: 10.7498/aps.60.064215
    [15] Cheng Hai-Ying, He Wen-Ping, Zhang Wen, Wu Qiong, He Tao. A new method to detect abrupt change based on approximate entropy. Acta Physica Sinica, 2011, 60(4): 049202. doi: 10.7498/aps.60.049202
    [16] Zheng Gui-Bo, Jin Ning-De. Multiscale entropy and dynamic characteristics of two-phase flow patterns. Acta Physica Sinica, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [17] Wang Qi-Guang, Zhang Zeng-Ping. The research of detecting abrupt climate change with approximate entropy. Acta Physica Sinica, 2008, 57(3): 1976-1983. doi: 10.7498/aps.57.1976
    [18] Zhuang Jian-Jun, Ning Xin-Bao, Zou Ming, Sun Biao, Yang Xi. Agreement of two entropy-based measures on quantifying the complexity of short-term heart rate variability signals from professional shooters. Acta Physica Sinica, 2008, 57(5): 2805-2811. doi: 10.7498/aps.57.2805
    [19] Research of adaptive stochastic resonance based on approximate entropy. Acta Physica Sinica, 2007, 56(12): 6803-6808. doi: 10.7498/aps.56.6803
    [20] Cao Biao, Lü Xiao-Qing, Zeng Min, Wang Zhen-Min, Huang Shi-Sheng. Approximate entropy analysis of current in short-circuiting arc welding. Acta Physica Sinica, 2006, 55(4): 1696-1705. doi: 10.7498/aps.55.1696
Metrics
  • Abstract views:  6644
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2016
  • Accepted Date:  23 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map