Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective

Yu Zu-Qing Yang Wei-Ji He Feng

Citation:

Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective

Yu Zu-Qing, Yang Wei-Ji, He Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ionizations of atoms and molecules in strong laser fields are fundamental processes of ultrafast physics. Compared with atom ionization, molecular ionization is very complex due to the existence of multi Coulomb centers. As a simplest molecule, H2+ has been widely used to explore new phenomena of molecules in strong laser fields. One of the notable processes in H2+ ionization is charge resonance enhanced ionization (CREI), in which the ionization rate is enhanced substantially when the internuclear distances are around 6 a.u. and 10 a.u. CREI has been extensively studied by numerically simulating the time-dependent Schrödinger equation. While quantum calculations provide accurate ionization rates, the mechanism governing the CREI is not revealed in such ab-initio calculations. On the contrary, the calculations based on the classical trajectories Monte-Carlo assembly may offer an intuitive picture for CREI though some quantum information is not included. In this paper, we revisit the CREI of H2+ in a strong infrared laser field by Monte-Carlo simulation. By initializing ten-thousand classical points whose initial positions and velocities satisfy the field-free Hamiltonian of H2+, we solve the classical Newtonian equation and obtain the trajectories of all particles, from which one may analyze the particle velocities, energies, etc. We count the ionization events by diagnosing the particle energy after the laser interaction. If the sum of the kinetic energy and potential energy is larger than 0, we set it as an ionization event. The ionization rate is calculated by collecting all ionization events and normalizing it with the total particle number involved in the calculation. By setting the internuclear distances to be different values, we obtain the ionization rate as a function of internuclear distance. Our simulation shows that the ionization probability is greatly enhanced when the internuclear distance is about 5 to 6 a.u. by employing a 1064 nm, 4×1013 W/cm2, five cycles laser pulse. By tracing the particle trajectory, we find that the electron usually gains the energy from the laser field by circulating one nucleus, then passes through the interatomic barrier and moves around the other nucleus before being ionized. By looking into the relationship between the ionization probability and the laser-distorted Coulomb potential at different internuclear distances, we find that the ionization probability is maximum when the energy difference between the ground state and the interatomic Coulomb barrier, or between the ground state and the saddle value of the laser-distorted potential, is minimum. The classical calculation of the ionization of H2+ interacting with intense laser field reproduces the qualitative features of the corresponding quantum-mechanical calculation. It offers an intuitive physical picture of the tunneling ionization of molecules through investigating the classical trajectories and provides a new perspective to inspect the intriguing phenomena in quantum systems.
      Corresponding author: He Feng, fhe@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11322438, 11574205).
    [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    L'Huillier, Schafer K J, Kulander K C 1991 J. Phys. B 24 3315

    [3]

    Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese)[周效信, 李白文2001 50 1902]

    [4]

    Sukharev M E, Krainov V P 1998 J. Opt. Soc. Am. B:Opt. Phys. 15 2201

    [5]

    Winter M, Schmidt R, Thumm U 2009 Phys. Rev. A 80 031401

    [6]

    Guo C, Li M, Nibarger J P, Gibson G N 1998 Phys. Rev. A 58 R4271

    [7]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [8]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [9]

    He F, Becker A, Thumm U 2008 Phys. Rev. Lett. 101 213002

    [10]

    He F, Thumm U 2010 Phys. Rev. A 81 053413

    [11]

    He F 2012 Phys. Rev. A 86 063415

    [12]

    Rankin R, Capjack C E, Burnett N H, Corkum P B 1991 Opt. Lett. 16 835

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Paulus G G, Nicklich W, Zacher F, Lambropoulos P, Walther H 1996 J. Phys. B 29 L249

    [15]

    Yu X G, Wang B B, Chen T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese)[余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭2005 54 3542]

    [16]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511

    [17]

    Staudte A, Pavičič D, Chelkowski S, Zeidler D, Meckndel M, Niikura H, Schöffler M, Schössler S, Ulrich B, Rajeev P P, Weber Th, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, Dörner R 2007 Phys. Rev. Lett. 98 073003

    [18]

    Ben-Itzhak I, Wang P Q, Sayler A M, Carnes K D, Leonard M, Esry B D, Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ghimire S, Chang Z, Cocke C L 2008 Phys. Rev. A 78 063419

    [19]

    Xu H, He F, Kielpinski D, Sang R T, Litvinyuk I V 2015 Sci. Rep. 5 13527

    [20]

    Xin L, Qin H C, Wu W Y, He F 2015 Phys. Rev. A 92 063803

    [21]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [22]

    Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J, Légaré F 2011 Phys. Rev. Lett. 107 063201

    [23]

    Lötstedt E, Kato T, Yamanouchi K 2012 Phys. Rev. A 85 041402

    [24]

    Xi C, Chu S 2000 Phys. Rev. A 63 013414

    [25]

    Plummer M, McCann J F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4625

    [26]

    Tsogbayar T, Horbatsch M 2013 J. Phys. B 46 085004

    [27]

    Rzaewski K, Mewenstein, Salières P 1994 Phys. Rev. A 49 1196

    [28]

    Grobe R, Law C K 1991 Phys. Rev. A 44 R4114

    [29]

    Qu W X, Hu S X, Xu Z Z 1998 Acta Phys. Sin. 47 571 (in Chinese)[屈卫星, 胡素兴, 徐至展1998 47 571]

    [30]

    Balcou Ph, L'Huillier A, Escande D 1996 Phys. Rev. A 53 3456

    [31]

    Bandarage G, Maquet A, Cooper J 1990 Phys. Rev. A 41 1744

    [32]

    Cocke S, Reichl L E 1996 Phys. Rev. A 53 1746

    [33]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002

    [35]

    Duan Y W, Liu W K, Yuan J M 2000 Phys. Rev. A 61 053403

  • [1]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [2]

    L'Huillier, Schafer K J, Kulander K C 1991 J. Phys. B 24 3315

    [3]

    Zhou X X, Li B W 2001 Acta Phys. Sin. 50 1902 (in Chinese)[周效信, 李白文2001 50 1902]

    [4]

    Sukharev M E, Krainov V P 1998 J. Opt. Soc. Am. B:Opt. Phys. 15 2201

    [5]

    Winter M, Schmidt R, Thumm U 2009 Phys. Rev. A 80 031401

    [6]

    Guo C, Li M, Nibarger J P, Gibson G N 1998 Phys. Rev. A 58 R4271

    [7]

    Gibson G N, Li M, Guo C, Neira J 1997 Phys. Rev. Lett. 79 2022

    [8]

    He F, Ruiz C, Becker A 2007 Phys. Rev. Lett. 99 083002

    [9]

    He F, Becker A, Thumm U 2008 Phys. Rev. Lett. 101 213002

    [10]

    He F, Thumm U 2010 Phys. Rev. A 81 053413

    [11]

    He F 2012 Phys. Rev. A 86 063415

    [12]

    Rankin R, Capjack C E, Burnett N H, Corkum P B 1991 Opt. Lett. 16 835

    [13]

    Fittinghoff D N, Bolton P R, Chang B, Kulander K C 1992 Phys. Rev. Lett. 69 2642

    [14]

    Paulus G G, Nicklich W, Zacher F, Lambropoulos P, Walther H 1996 J. Phys. B 29 L249

    [15]

    Yu X G, Wang B B, Chen T W, Li X F, Fu P M 2005 Acta Phys. Sin. 54 3542 (in Chinese)[余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭2005 54 3542]

    [16]

    Zuo T, Bandrauk A D 1995 Phys. Rev. A 52 R2511

    [17]

    Staudte A, Pavičič D, Chelkowski S, Zeidler D, Meckndel M, Niikura H, Schöffler M, Schössler S, Ulrich B, Rajeev P P, Weber Th, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, Dörner R 2007 Phys. Rev. Lett. 98 073003

    [18]

    Ben-Itzhak I, Wang P Q, Sayler A M, Carnes K D, Leonard M, Esry B D, Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ghimire S, Chang Z, Cocke C L 2008 Phys. Rev. A 78 063419

    [19]

    Xu H, He F, Kielpinski D, Sang R T, Litvinyuk I V 2015 Sci. Rep. 5 13527

    [20]

    Xin L, Qin H C, Wu W Y, He F 2015 Phys. Rev. A 92 063803

    [21]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [22]

    Bocharova I, Karimi R, Penka E F, Brichta J P, Lassonde P, Fu X, Kieffer J C, Bandrauk A D, Litvinyuk I, Sanderson J, Légaré F 2011 Phys. Rev. Lett. 107 063201

    [23]

    Lötstedt E, Kato T, Yamanouchi K 2012 Phys. Rev. A 85 041402

    [24]

    Xi C, Chu S 2000 Phys. Rev. A 63 013414

    [25]

    Plummer M, McCann J F 1996 J. Phys. B:At. Mol. Opt. Phys. 29 4625

    [26]

    Tsogbayar T, Horbatsch M 2013 J. Phys. B 46 085004

    [27]

    Rzaewski K, Mewenstein, Salières P 1994 Phys. Rev. A 49 1196

    [28]

    Grobe R, Law C K 1991 Phys. Rev. A 44 R4114

    [29]

    Qu W X, Hu S X, Xu Z Z 1998 Acta Phys. Sin. 47 571 (in Chinese)[屈卫星, 胡素兴, 徐至展1998 47 571]

    [30]

    Balcou Ph, L'Huillier A, Escande D 1996 Phys. Rev. A 53 3456

    [31]

    Bandarage G, Maquet A, Cooper J 1990 Phys. Rev. A 41 1744

    [32]

    Cocke S, Reichl L E 1996 Phys. Rev. A 53 1746

    [33]

    Chelkowski S, Foisy C, Bandrauk A D 1998 Phys. Rev. A 57 1176

    [34]

    Li M, Geng J W, Liu H, Deng Y, Wu C, Peng L Y, Gong Q H, Liu Y Q 2014 Phys. Rev. Lett. 112 113002

    [35]

    Duan Y W, Liu W K, Yuan J M 2000 Phys. Rev. A 61 053403

  • [1] Wang JingZhe, Dong FuLong, Liu Jie. Dissociation dynamic study of H2+ in time-delayed two-color femtosecond lasers. Acta Physica Sinica, 2024, 73(24): . doi: 10.7498/aps.73.20241283
    [2] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [3] Tao Jian-Fei, Xia Qin-Zhi, Liao Lin-Gu, Liu Jie, Liu Xiao-Jing. Theory and application of photoelectron trajectory interference holography for atomic ionization in intense laser field. Acta Physica Sinica, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [4] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [5] Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen. Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field. Acta Physica Sinica, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [6] Hui Dan-Dan, Tian Jin-Shou, Wang Jun-Feng, Lu Yu, Wen Wen-Long, Xu Xiang-Yan. Dynamic properties of a small-size streak tube. Acta Physica Sinica, 2016, 65(1): 018502. doi: 10.7498/aps.65.018502
    [7] Liu Yu-Zhu, Gerber Thomas, Knopp Gregor. Optical control of the vibrational excitation of the polyatomic ions via strong field multi-photon ionization. Acta Physica Sinica, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [8] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [9] Li Chun, Zhang Shao-Bin, Jin Wei, Georgios Lefkidis, Wolfgang Hübner. Laser-induced ultrafast spin transfer in linear magnetic molecular ions. Acta Physica Sinica, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [10] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [11] Xiao Xue, Li Hai-Yang, Luo Xiao-Lin, Niu Dong-Mei, Wen Li-Hua, Wang Bin, Liang Feng, Hou Ke-Yong, Dong Can, Shao Shi-Yong. Cluster-assisted multiple ionization of acetone by intense nanosecond laser. Acta Physica Sinica, 2006, 55(2): 661-666. doi: 10.7498/aps.55.661
    [12] Shi Chun-Hua, Qiu Xi-Jun, An Wei-Ke, Li Ru-Xin. Influence of intense pulse laser on penetron-atomic ionization in muon-catalysed fusion. Acta Physica Sinica, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [13] Luo Xiao-Lin, Kong Xiang-Lei, Niu Dong-Mei, Qu Hong-Bo, Li Hai-Yang. Cluster-enhanced generation of multicharged xenon ions in nanosecond laser ionization of xenon beam. Acta Physica Sinica, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [14] Wang Gui-Qiu, Wang You-Nian. Influence of laser field on interactions between swift molecular ions and solids. Acta Physica Sinica, 2003, 52(4): 939-946. doi: 10.7498/aps.52.939
    [15] WANG XUN-CHUN, QIU XI-JUN, ZHENG LI-PING. INFLUENCE OF RELATIVE PHASE ON THE ENHANCED IONIZATION BEHAVIOUR OF LINEAR MULTIATOMIC MOLECULAR IONS IN TWO-COLOR LASER FIELDS. Acta Physica Sinica, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [16] ZHENG LI-PING, QIU XI-JUN. THE INFLUENCE OF THE INTENSITY AND THE FREQUENCY ON THE ENHANCED IONIZATION BEHA VIOR OF MULTIATOMIC MOLECULAR IONS IN THE INTENSE LASER FIELDS. Acta Physica Sinica, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [17] YANG XIAO-HUA, CHEN YANG-QIN, CAI PEI-PEI, LU JING-JING, WANG RONG-JUN. DIFFERENTIAL VELOCITY-MODULATION LASER SPECTROSCOPY OF MOLECULAR IONS. Acta Physica Sinica, 1999, 48(5): 834-839. doi: 10.7498/aps.48.834
    [18] WANG YOU-NIAN, MA TENG-CAI. SCATTERING AND ENERGY LOSS FOR SLOW MOLECU-LAR IONS IN ELECTRON GASES IN SOLIDS. Acta Physica Sinica, 1994, 43(6): 979-984. doi: 10.7498/aps.43.979
    [19] SUN BIAO, LI JIA-MING. ELECTRONIC STRUCTURE OF MOLECULAR RYDBERG STATES OF SOME SMALL MOLECULES AND MOLECULAR ION. Acta Physica Sinica, 1993, 42(1): 25-31. doi: 10.7498/aps.42.25
    [20] CHEN RONG-QING, XU ZHI-ZHAN, SUN LAN, YAO GUAN-HUA, ZHANG WEN-QI, LI PING. STRONG-FIELD AUTOIONIZATION BY SQUARE LASER PULSES. Acta Physica Sinica, 1991, 40(10): 1584-1589. doi: 10.7498/aps.40.1584
Metrics
  • Abstract views:  6068
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2016
  • Accepted Date:  27 June 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map