-
利用非波恩-奥本海默近似的三维含时量子波包法,理论研究了氢分子离子在强激光场中的解离动力学.通过分析H2+在不同的初始振动态(ν=0–9)和激光场强度下的解离核动能谱,得到了H2+的光解离机理及其随激光场的变化规律.研究结果表明:当激光场的强度I1=5.0×1013 W/cm2时,分子的解离来源于高振动态ν=5–9,其解离机理主要是通过键软化、键硬化和阈下解离过程.当激光场的强度I2=1.0×1014 W/cm2 时,H2+在低振动态ν=3–4上的阈上解离起主导作用,而高振动态的键软化、键硬化和阈下解离所占的比重明显地下降了.研究结果为后续的量子调控的实验研究提供了科学的理论预测和指导.The dissociation dynamics of hydrogen molecular ions in intense fields has been investigated by using an accurate three-dimensional (3D) time-dependent wave packet approach. Its dissociation mechanism and intensity dependence can be studied by analyzing the dissociation probability and kinetic energy resolved (KER) spectra of H2+. It is found that the dissociation of H2+ comes from ν=5–9 states at the laser intensity of I1= 5.0×1013 W/cm2. The dissociation process includes bond softening (BS), bond hardening (BH), and below threshold dissociation (BTD). As the laser intensity increases to I2=1.0×1014 W/cm2, the above threshold dissociation (ATD) from ν=3 and 4 states is predominant, and the contributions from the bond softening and bond hardening are reduced during the dissociation process. The above conclusions may provide scientific prediction and theoretical guidance for the experiment in the future.
-
Keywords:
- photodissociation /
- hydrogen molecular ion /
- time-dependent wave packet method /
- kinetic energy resolved spectra
[1] Yao H B, Zheng Y J 2012 Chin. Phys. B 21 023302
[2] Feng L Q, Chu T S, Wang L 2013 Chin. Phys. B 22 023302
[3] Yao H B, Zheng Y J 2011 Acta Phys. Sin. 60 128201(in Chinese) [姚洪斌, 郑雨军 2011 60 128201]
[4] Yao H B, Zheng Y J 2011 Phys. Chem. Chem. Phys. 13 8900
[5] Xu T Y, He F 2013 Acta Phys. Sin. 62 068201(in Chinese) [徐天宇, 何峰 2013 62 068201]
[6] Yao H B, Lin S Y, Zheng Y J 2011 J. Theor. Comp. Chem. 10 509
[7] Wollenhaupt M, Engel V, Baumert T 2005 Annu. Rev. Phys. Chem. 56 25
[8] Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883
[9] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625
[10] Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845
[11] Posthumus J H 2004 Rep. Prog. Phys. 67 623
[12] Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94 163002
[13] Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410
[14] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J 2006 Science 312 246
[15] Esry B D, Sayler A M, Wang P Q, Carnes K D, Ben-Itzhak I 2006 Phys. Rev. Lett. 97 013003
[16] Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89 025401
[17] Hua J J, Esry B D 2009 Phys. Rev. A 80 013413
[18] Chatterjee S, Dutta B, Bhattacharyya S S 2011 Phys. Rev. A 83 063413
[19] Yang D, Cong S L 2011 Phys. Rev. A 84 013424
[20] Bhattacharya R, Chatterjee S, Bhattacharyya S S 2012 Phys. Rev. A 85 033424
[21] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418
[22] He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311
[23] Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701
[24] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[25] Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405
[26] Ben-Itzhak I, Wang P Q, Xia J F, Sayler A M, Smith M A, Carnes K D, Esry B D 2005 Phys. Rev. Lett. 95 073002
[27] Wang P Q, Sayler A M, Carnes K D, Xia J F, Smith M A, Esry B D, Ben-Itzhak I 2006 Phys. Rev. A 74 043411
-
[1] Yao H B, Zheng Y J 2012 Chin. Phys. B 21 023302
[2] Feng L Q, Chu T S, Wang L 2013 Chin. Phys. B 22 023302
[3] Yao H B, Zheng Y J 2011 Acta Phys. Sin. 60 128201(in Chinese) [姚洪斌, 郑雨军 2011 60 128201]
[4] Yao H B, Zheng Y J 2011 Phys. Chem. Chem. Phys. 13 8900
[5] Xu T Y, He F 2013 Acta Phys. Sin. 62 068201(in Chinese) [徐天宇, 何峰 2013 62 068201]
[6] Yao H B, Lin S Y, Zheng Y J 2011 J. Theor. Comp. Chem. 10 509
[7] Wollenhaupt M, Engel V, Baumert T 2005 Annu. Rev. Phys. Chem. 56 25
[8] Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883
[9] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625
[10] Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845
[11] Posthumus J H 2004 Rep. Prog. Phys. 67 623
[12] Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94 163002
[13] Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79 033410
[14] Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J 2006 Science 312 246
[15] Esry B D, Sayler A M, Wang P Q, Carnes K D, Ben-Itzhak I 2006 Phys. Rev. Lett. 97 013003
[16] Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89 025401
[17] Hua J J, Esry B D 2009 Phys. Rev. A 80 013413
[18] Chatterjee S, Dutta B, Bhattacharyya S S 2011 Phys. Rev. A 83 063413
[19] Yang D, Cong S L 2011 Phys. Rev. A 84 013424
[20] Bhattacharya R, Chatterjee S, Bhattacharyya S S 2012 Phys. Rev. A 85 033424
[21] He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418
[22] He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311
[23] Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701
[24] Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001
[25] Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405
[26] Ben-Itzhak I, Wang P Q, Xia J F, Sayler A M, Smith M A, Carnes K D, Esry B D 2005 Phys. Rev. Lett. 95 073002
[27] Wang P Q, Sayler A M, Carnes K D, Xia J F, Smith M A, Esry B D, Ben-Itzhak I 2006 Phys. Rev. A 74 043411
计量
- 文章访问数: 5748
- PDF下载量: 552
- 被引次数: 0