Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dissociation dynamic study of H2+ in time-delayed two-color femtosecond lasers

Wang JingZhe Dong FuLong Liu Jie

Citation:

Dissociation dynamic study of H2+ in time-delayed two-color femtosecond lasers

Wang JingZhe, Dong FuLong, Liu Jie
PDF
Get Citation
  • In recent years, the rapid development of ultrashort pulse laser technology has made it possible to regulate the ionization and dissociation dynamics of atoms and molecules. Among them, the microscopic dynamics of molecular dissociation have always been a hot topic. The phenomenon of molecular dissociation caused by the interaction between femtosecond intense laser fields and H2+ molecules has attracted widespread attention. Previous theoretical studies on the dissociation of H2+ molecules mainly focused on studying its dissociation dynamics through numerical calculations, while there were relatively few theoretical models. This paper aims to establish a simple classical model to describe the dissociation dynamics. Firstly, this paper calculates the joint distribution of nuclear and electronic energies during the dissociation process of H2+ molecules under the action of pump lasers by numerically solving the Schrödinger equation, and proves that H2+ molecules initially in the ground state dissociate into H+ + H* after absorbing a pump photon in the pump light field. Next, this paper studies the dissociation dynamics of H2+ molecules in time-delayed two-color femtosecond lasers and finds that it closely depends on the specific forms of the pump light and the probe light. By utilizing the dependence of the dissociation kinetic energy release (KER) spectrum on the time delay of the two-color femtosecond lasers, we have retrieved the sub-attosecond microscopic dynamic behaviors of electrons and atomic nuclei during the dissociation process, and established a classical model based on the conservation of energy and momentum to describe the dissociation dynamics. This model can qualitatively predict the ion dissociation KER spectrum depending on the time delay of the two-color femtosecond lasers. In addition, by taking advantage of the dependence of the ion kinetic energy spectrum on the frequency of the probe laser (that is, the electronic resonant transition between the molecular ground state and the first excited state caused by the probe light will affect the ion kinetic energy spectrum during the dissociation process), we propose a scheme to reconstruct the evolution of the internuclear distance over time. Our reconstruction results can qualitatively predict the trend of the numerical simulation results, and this scheme may provide some theoretical guidance for experiments.
  • [1]

    Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Ranitovic P, Ulrich B, Shan B, Chang Z, Lin C D, and Cocke C L 2004 Phys. Rev. A 93183202.

    [2]

    Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, and Sandner W 2009 Phys. Rev. Lett. 102113002.

    [3]

    Mi Y H, Peng P, Camus N, Sun X F, Fross P, Martinez D, Dube Z, Corkum P B, Villeneuve D M, Staudte A, Moshammer R, and Pfeifer T 2020 Phys. Rev. Lett. 125173201.

    [4]

    Pan S Z, Zhang W B, Li H, Lu C X, Zhang W H, Ji Q Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H, Zhou L R, Jiang W Y, Gong X C, Lu P F, and Wu J 2021 Phys. Rev. Lett. 126063201.

    [5]

    Guo Z N, Zhang Z H, Deng Y K, Wang J G, Ye D F, Liu J, and Liu Y Q 2024 Phys. Rev. Lett. 132143201.

    [6]

    Zhang Y, Wang X, Xu Z F, Ren J R, Zhang Y N, Zhou X M, Liang C H, Zhang X A 2024 Acta Phys. Sin. 73023101(in Chinese) [[张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安2024 73023101].

    [7]

    Luo Y, Yu X, Lei J T, Tao C Y, Zhang S F, Zhu X L, Ma X W, Yan S C, Zhao X H 2024 Acta Phys. Sin. 73044101(in Chinese) [骆炎,余璇,雷建廷,陶琛玉,张少锋,朱小龙,马新文,闫顺成,赵晓辉2024 73044101].

    [8]

    Jin W W, Wang C C, Zhao X G, Yang Y Z, Ren D X, Liu Z L, Li X K, Luo S Z, Dinf D J 2024 Chin. Phys. Lett. 41053101.

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, and Schumacher D W 2019 Phys. Rev. Lett. 641883.

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F and Langley A J 1999 Phys. Rev. Lett. 833625.

    [11]

    Jolicard G and Atabek O 1992 Phys. Rev. A 465845.

    [12]

    Posthumus J H, Plumridge J, Frasinski L J, Codling K, Divall E J, Langley A J and Taday P F 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L 563.

    [13]

    Niikura H, F. Légaré, Hasbani R, Ivanov M Y, Villeneuve D M and Corkum P B 2003 Nature 421826.

    [14]

    Staudte A, Pavičić D, Chelkowski S, Zeidler D, Meckel M, Niikura H, M. Schöffler, Schössler S, Ulrich B, Rajeev P P, Weber T, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, and Dörner R 2007 Phys. Rev. Lett. 98073003.

    [15]

    Xu H, Li Zhi C, He F, Wang X, Atia T N A, Kielpinski D, Sang R T and Litvinyuk I V 2017 Nat. Commun. 815849.

    [16]

    Hanus V, Kangaparambil S, Larimian S, Dorner Kirchner M, Xie X H, Schöffler M S, Paulus G G, Baltušska A, Staudte A, and Kitzler Zeiler M 2019 Phys. Rev. Lett. 123263201.

    [17]

    Li X K, Yu X T, Ma P, Zhao X N, Wang C C, Luo S Z, Ding D J 2022 Chin. Phys. B 31103304.

    [18]

    Leth H A, Madsen L B, and Mølmer K 2010 Phys. Rev. A 81053409.

    [19]

    Leth H A, Madsen L B, and Mølmer K 2010 Phys. Rev. A 81053410.

    [20]

    Liu K L, and Barth I 2021 Phys. Rev. A 103013103.

    [21]

    Sami F, Vafaee M, and Shokri B 2016 Journal of Physics B: Atomic, Molecular and Optical Physics 44165601.

    [22]

    Zhao M M, Li L H, Si B W, Wang B B, Fu B N, Han Y C 2022 Chin. Phys. Lett. 39083401.

    [23]

    Hu T C, Zhu S K, Zhao Y N, Sun X, Yang J, He Y, Wang X B, Bai C J, Bai H, Wei H, Cao M, Hu Z Q, Liu M, Cui W Z 2022 Chin. Phys. B 31047901.

    [24]

    Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94163002.

    [25]

    Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79033410.

    [26]

    Kling M F, Siedschlag C, Verhoef A J, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J 2006 Science 312246.

    [27]

    Esry B D, Sayler A M, Wang P Q, Carnes K D, BenItzhak I 2006 Phys. Rev. Lett. 97013003.

    [28]

    Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89025401.

    [29]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81163.

    [30]

    Feng L Q 2015 Phys. Rev. A 92053832.

    [31]

    Roudnev V, Esry B D, Itzhak I B 2004 Phys. Rev. Lett. 93163601.

    [32]

    Gibson G N, Li M, Guo C, and Neira J 1997 Phys. Rev. Lett. 792022.

    [33]

    Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ali R, Ghimire S, Chang Z, Lin C D, and Cocke C L 2005 Phys. Rev. A 72030702.

    [34]

    Hua J J, Esry B D 2009 Phys. Rev. A 80013413.

    [35]

    Benis E P, Bakarezos M, Papadogiannis N A, Tatarakis M, Divanis S, Broin C O, and Nikolopoulos ´ L A A 2012 Phys. Rev. A 86043428.

    [36]

    Hu H t, Xu H, Bai Y, Sang R T, Litvinyuk I V, Liu P, and Li R X 2016 Phys. Rev. A 94053415.

    [37]

    Fischer B, Kremer M, Pfeifer T, Feuerstein B, Sharma V, Thumm U, Schröter C D, Moshammer R, and Ullrich J 2010 Phys. Rev. Lett. 105223001.

    [38]

    Jia Z M, Zeng Z N, Li R X, Xu Z Z, and Deng Y P 2014 Phys. Rev. A 89023419.

    [39]

    Zhang J, Pan X F, Du H, Xu T T, Guo J, Liu X S 2017 Optics Communications 382495.

    [40]

    Liu K L, Zhang Q B, and Lu P X 2012 Phys. Rev. A 86033410.

    [41]

    Wanie V 2016 Journal of Physics B: Atomic, Molecular and Optical Physics 49240.

    [42]

    Balint K G G 2015 Royal Society of Chemistry.

    [43]

    Lu R F, Zhang P Y, and Han K L 2008 Phys. Rev. E 77066701.

    [44]

    Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221148.

    [45]

    Feit M D, Fleck Jr J A, and Steiger A 1982 J. Comput. Phys. 47412.

  • [1] Zhong Zhen-Xiang. Review of the hyperfine structure theory of hydrogen molecular ions. Acta Physica Sinica, doi: 10.7498/aps.73.20241101
    [2] Zheng Yue, Zhang Yu-Xuan, Sun Shao-Hua, Ding Peng-Ji, Hu Bi-Tao, Liu Zuo-Ye. Modulation of non-adiabatic alignment of N2 molecule by femtosecond laser pulses. Acta Physica Sinica, doi: 10.7498/aps.72.20222112
    [3] Yu Zu-Qing, Yang Wei-Ji, He Feng. Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, doi: 10.7498/aps.65.204202
    [4] Yao Yun-Hua, Lu Chen-Hui, Xu Shu-Wu, Ding Jing-Xin, Jia Tian-Qing, Zhang Shi-An, Sun Zhen-Rong. Femtosecond pulse shaping technology and its applications. Acta Physica Sinica, doi: 10.7498/aps.63.184201
    [5] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.63.047901
    [6] Yao Hong-Bin, Zhang Ji, Peng Min, Li Wen-Liang. Theoretical study of the dissociation of H2+ and the quantum control of dynamic process by an intense laser field. Acta Physica Sinica, doi: 10.7498/aps.63.198202
    [7] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, doi: 10.7498/aps.62.210601
    [8] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock pressure in femtosecond laser ablation of solid target. Acta Physica Sinica, doi: 10.7498/aps.62.170601
    [9] Liu Xiao-Liang, Sun Shao-Hua, Cao Yu, Sun Ming-Ze, Liu Qing-Cao, Hu Bi-Tao. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma. Acta Physica Sinica, doi: 10.7498/aps.62.045201
    [10] Guo Kai-Min, Gao Xun, Hao Zuo-Qiang, Lu Yi, Sun Chang-Kai, Lin Jing-Quan. The fluorescence feature of plasma induced by femtosecond laser pulses in air. Acta Physica Sinica, doi: 10.7498/aps.61.075212
    [11] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, doi: 10.7498/aps.60.085205
    [12] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, doi: 10.7498/aps.60.025203
    [13] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, doi: 10.7498/aps.60.105203
    [14] Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin. Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence. Acta Physica Sinica, doi: 10.7498/aps.59.6940
    [15] Zhao Hong-Min, Wang Lu-Xia. Laser pulse control of bridge state electron transfer in heterogeneous structures. Acta Physica Sinica, doi: 10.7498/aps.58.1332
    [16] Wang Xiao-Lei, Zhang Nan, Zhao You-Bo, Li Zhi-Lei, Zhai Hong-Chen, Zhu Xiao-Nong. Determination of air ionization threshold with femtosecond laser pulses. Acta Physica Sinica, doi: 10.7498/aps.57.354
    [17] Generation of single plasma channel in air. Acta Physica Sinica, doi: 10.7498/aps.56.7114
    [18] Li Cheng-Bin, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Xu Shi-Zhen, Feng Dong-Hai, Wang Xiao-Feng, Ge Xiao-Chun, Xu Zhi-Zhan. Mechanism of femtosecond laser-induced damage in magnesium fluoride. Acta Physica Sinica, doi: 10.7498/aps.55.217
    [19] Zhu Pin-Pin, Liu Jian-Sheng, Xu Zhi-Zhan. Calculation of high-energy ions exploded from argon clusters in high intensity femtosecond laser pulses. Acta Physica Sinica, doi: 10.7498/aps.53.803
    [20] He Feng, Yu Wei, Lu Pei-Xiang. Field structure and electron density profile in circularly polarized femtosecond laser interaction with a linear plasma. Acta Physica Sinica, doi: 10.7498/aps.52.1965
Metrics
  • Abstract views:  93
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  12 November 2024

/

返回文章
返回
Baidu
map