-
In recent years, the rapid development of ultrashort pulse laser technology has made it possible to regulate the ionization and dissociation dynamics of atoms and molecules. Among them, the microscopic dynamics of molecular dissociation have always been a hot topic. The phenomenon of molecular dissociation caused by the interaction between femtosecond intense laser fields and H2+ molecules has attracted widespread attention. Previous theoretical studies on the dissociation of H2+ molecules mainly focused on studying its dissociation dynamics through numerical calculations, while there were relatively few theoretical models. This paper aims to establish a simple classical model to describe the dissociation dynamics. Firstly, this paper calculates the joint distribution of nuclear and electronic energies during the dissociation process of H2+ molecules under the action of pump lasers by numerically solving the Schrödinger equation, and proves that H2+ molecules initially in the ground state dissociate into H+ + H* after absorbing a pump photon in the pump light field. Next, this paper studies the dissociation dynamics of H2+ molecules in time-delayed two-color femtosecond lasers and finds that it closely depends on the specific forms of the pump light and the probe light. By utilizing the dependence of the dissociation kinetic energy release (KER) spectrum on the time delay of the two-color femtosecond lasers, we have retrieved the sub-attosecond microscopic dynamic behaviors of electrons and atomic nuclei during the dissociation process, and established a classical model based on the conservation of energy and momentum to describe the dissociation dynamics. This model can qualitatively predict the ion dissociation KER spectrum depending on the time delay of the two-color femtosecond lasers. In addition, by taking advantage of the dependence of the ion kinetic energy spectrum on the frequency of the probe laser (that is, the electronic resonant transition between the molecular ground state and the first excited state caused by the probe light will affect the ion kinetic energy spectrum during the dissociation process), we propose a scheme to reconstruct the evolution of the internuclear distance over time. Our reconstruction results can qualitatively predict the trend of the numerical simulation results, and this scheme may provide some theoretical guidance for experiments.
-
Keywords:
- femtosecond laser /
- hydrogen molecular ion /
- dissociation dynamics
-
[1] Alnaser A S, Tong X M, Osipov T, Voss S, Maharjan C M, Ranitovic P, Ulrich B, Shan B, Chang Z, Lin C D, and Cocke C L 2004 Phys. Rev. A 93183202.
[2] Manschwetus B, Nubbemeyer T, Gorling K, Steinmeyer G, Eichmann U, Rottke H, and Sandner W 2009 Phys. Rev. Lett. 102113002.
[3] Mi Y H, Peng P, Camus N, Sun X F, Fross P, Martinez D, Dube Z, Corkum P B, Villeneuve D M, Staudte A, Moshammer R, and Pfeifer T 2020 Phys. Rev. Lett. 125173201.
[4] Pan S Z, Zhang W B, Li H, Lu C X, Zhang W H, Ji Q Y, Li H X, Sun F H, Qiang J J, Chen F, Tong J H, Zhou L R, Jiang W Y, Gong X C, Lu P F, and Wu J 2021 Phys. Rev. Lett. 126063201.
[5] Guo Z N, Zhang Z H, Deng Y K, Wang J G, Ye D F, Liu J, and Liu Y Q 2024 Phys. Rev. Lett. 132143201.
[6] Zhang Y, Wang X, Xu Z F, Ren J R, Zhang Y N, Zhou X M, Liang C H, Zhang X A 2024 Acta Phys. Sin. 73023101(in Chinese) [[张颖, 王兴, 徐忠锋, 任洁茹, 张艳宁, 周贤明, 梁昌慧, 张小安2024 73023101].
[7] Luo Y, Yu X, Lei J T, Tao C Y, Zhang S F, Zhu X L, Ma X W, Yan S C, Zhao X H 2024 Acta Phys. Sin. 73044101(in Chinese) [骆炎,余璇,雷建廷,陶琛玉,张少锋,朱小龙,马新文,闫顺成,赵晓辉2024 73044101].
[8] Jin W W, Wang C C, Zhao X G, Yang Y Z, Ren D X, Liu Z L, Li X K, Luo S Z, Dinf D J 2024 Chin. Phys. Lett. 41053101.
[9] Bucksbaum P H, Zavriyev A, Muller H G, and Schumacher D W 2019 Phys. Rev. Lett. 641883.
[10] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F and Langley A J 1999 Phys. Rev. Lett. 833625.
[11] Jolicard G and Atabek O 1992 Phys. Rev. A 465845.
[12] Posthumus J H, Plumridge J, Frasinski L J, Codling K, Divall E J, Langley A J and Taday P F 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L 563.
[13] Niikura H, F. Légaré, Hasbani R, Ivanov M Y, Villeneuve D M and Corkum P B 2003 Nature 421826.
[14] Staudte A, Pavičić D, Chelkowski S, Zeidler D, Meckel M, Niikura H, M. Schöffler, Schössler S, Ulrich B, Rajeev P P, Weber T, Jahnke T, Villeneuve D M, Bandrauk A D, Cocke C L, Corkum P B, and Dörner R 2007 Phys. Rev. Lett. 98073003.
[15] Xu H, Li Zhi C, He F, Wang X, Atia T N A, Kielpinski D, Sang R T and Litvinyuk I V 2017 Nat. Commun. 815849.
[16] Hanus V, Kangaparambil S, Larimian S, Dorner Kirchner M, Xie X H, Schöffler M S, Paulus G G, Baltušska A, Staudte A, and Kitzler Zeiler M 2019 Phys. Rev. Lett. 123263201.
[17] Li X K, Yu X T, Ma P, Zhao X N, Wang C C, Luo S Z, Ding D J 2022 Chin. Phys. B 31103304.
[18] Leth H A, Madsen L B, and Mølmer K 2010 Phys. Rev. A 81053409.
[19] Leth H A, Madsen L B, and Mølmer K 2010 Phys. Rev. A 81053410.
[20] Liu K L, and Barth I 2021 Phys. Rev. A 103013103.
[21] Sami F, Vafaee M, and Shokri B 2016 Journal of Physics B: Atomic, Molecular and Optical Physics 44165601.
[22] Zhao M M, Li L H, Si B W, Wang B B, Fu B N, Han Y C 2022 Chin. Phys. Lett. 39083401.
[23] Hu T C, Zhu S K, Zhao Y N, Sun X, Yang J, He Y, Wang X B, Bai C J, Bai H, Wei H, Cao M, Hu Z Q, Liu M, Cui W Z 2022 Chin. Phys. B 31047901.
[24] Pavicic D, Kiess A, Hansch T W, Figger H 2005 Phys. Rev. Lett. 94163002.
[25] Magrakvelidze M, He F, Niederhausen T, Litvinyuk I V, Thumm U 2009 Phys. Rev. A 79033410.
[26] Kling M F, Siedschlag C, Verhoef A J, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J 2006 Science 312246.
[27] Esry B D, Sayler A M, Wang P Q, Carnes K D, BenItzhak I 2006 Phys. Rev. Lett. 97013003.
[28] Guo W, Lu X Q, Zhao D, Wang X L 2014 Phys. Scr. 89025401.
[29] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81163.
[30] Feng L Q 2015 Phys. Rev. A 92053832.
[31] Roudnev V, Esry B D, Itzhak I B 2004 Phys. Rev. Lett. 93163601.
[32] Gibson G N, Li M, Guo C, and Neira J 1997 Phys. Rev. Lett. 792022.
[33] Alnaser A S, Ulrich B, Tong X M, Litvinyuk I V, Maharjan C M, Ranitovic P, Osipov T, Ali R, Ghimire S, Chang Z, Lin C D, and Cocke C L 2005 Phys. Rev. A 72030702.
[34] Hua J J, Esry B D 2009 Phys. Rev. A 80013413.
[35] Benis E P, Bakarezos M, Papadogiannis N A, Tatarakis M, Divanis S, Broin C O, and Nikolopoulos ´ L A A 2012 Phys. Rev. A 86043428.
[36] Hu H t, Xu H, Bai Y, Sang R T, Litvinyuk I V, Liu P, and Li R X 2016 Phys. Rev. A 94053415.
[37] Fischer B, Kremer M, Pfeifer T, Feuerstein B, Sharma V, Thumm U, Schröter C D, Moshammer R, and Ullrich J 2010 Phys. Rev. Lett. 105223001.
[38] Jia Z M, Zeng Z N, Li R X, Xu Z Z, and Deng Y P 2014 Phys. Rev. A 89023419.
[39] Zhang J, Pan X F, Du H, Xu T T, Guo J, Liu X S 2017 Optics Communications 382495.
[40] Liu K L, Zhang Q B, and Lu P X 2012 Phys. Rev. A 86033410.
[41] Wanie V 2016 Journal of Physics B: Atomic, Molecular and Optical Physics 49240.
[42] Balint K G G 2015 Royal Society of Chemistry.
[43] Lu R F, Zhang P Y, and Han K L 2008 Phys. Rev. E 77066701.
[44] Lehtovaara L, Toivanen J, Eloranta J 2007 J. Comput. Phys. 221148.
[45] Feit M D, Fleck Jr J A, and Steiger A 1982 J. Comput. Phys. 47412.
Metrics
- Abstract views: 93
- PDF Downloads: 1
- Cited By: 0