Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic properties of a small-size streak tube

Hui Dan-Dan Tian Jin-Shou Wang Jun-Feng Lu Yu Wen Wen-Long Xu Xiang-Yan

Citation:

Dynamic properties of a small-size streak tube

Hui Dan-Dan, Tian Jin-Shou, Wang Jun-Feng, Lu Yu, Wen Wen-Long, Xu Xiang-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Scannerless (flash) lidar system based on streak camera is able to realize three-dimensional (3D) multi-spectral fluorescence imaging and 3D imaging polarimetry. Compared with conventional lidar system, the flash lidar system overcomes image distortions caused by the motion between the target and the sensor platform. Other advantages of the flash lidar system are higher image update rates and the potential for creating a miniaturized lidar system. To meet the requirements for developing this new technology, a super small-sized, large photocathode area and meshless streak tube with spherical cathode and screen is designed with the aid of computer simulation technology (CST) software. The tube with nearly 28 mm wide photocathode work area contains two electrostatic focusing lens, a pair of deflection plates, and a 50 mm diameter output screen. The external dimension of the tube is merely 50 mm100 mm. And its electromagnetic fields are calculated in the CST Particle Studio based on the finite integration theory. Some dynamic properties of the tube are analyzed via observing different electron trajectories launched from a number of different points on the cathode. The influences of the deflector position on deflection sensitivity and spatial resolution are analyzed. Increasing the distance between the deflector and the anode pin hole leads to a worse deflection sensitivity but a better spatial resolution. As for the temporal resolution, three electron pulses separated by 30 ps can be well resolved by the streak tube in the dynamic mode. Thus, the dynamic temporal resolution of the streak tube is better than 30 ps. And a 10 lp/mm spatial resolution across the 28 mm long slit on the photocathode can be obtained by estimating modulation transfer functions of the electron trajectories. Temporal distortions at the entire photocathode working area are evaluated, and the data reveal that the larger the photocathode working area, the bigger the temporal distortions are. Also, the temporal distortion is present mainly in the photocathode-to-deflection plates region. In addition, the slit image of the streak tube working in the dynamic mode is simulated and presented. The phenomenon that the slit image is curved due to the temporal distortion is analyzed. Two rectangular electron pulses separated by 50 ps are well resolved by the streak tube. Therefore, the temporal resolution of this small-size steak tube is better than 50 ps with a rectangular slit dimension of 30 mm50 m on the photocathode, and its electron-optic magnification is 1.2.
      Corresponding author: Tian Jin-Shou, tianjs@opt.ac.cn
    [1]

    Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 63 058501]

    [2]

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 64 098501]

    [3]

    Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J 2002 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, July 29, 2002 p9

    [4]

    Mclean J W 1999 Proceedings of SPIE on Airborne and In-Water Underwater Imaging Denver, Colorado, USA, October 28, 1999 p10

    [5]

    Gao J, Sun J F, Wang Q 2014 Optik 125 5199

    [6]

    Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674

    [7]

    Yang H R, Wu L, Wang X P, Chen C, Yu B, Yang B, Yuan L, Wu L P, Xue Z L, Li G P, Wu B N 2012 Appl. Opt. 51 8825

    [8]

    Gleckler A D 2000 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 5, 2000 p266

    [9]

    Gleckler A D, Gelbart A 2001 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 19, 2001 p175

    [10]

    Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115

    [11]

    Sun J F, Liu J B, Wang Q 2013 Optik 124 204

    [12]

    Tian Z S, Cui Z H, Zhang L T, Xu T C, Zhang Y C, Fu S Y 2014 Chin. Opt. Lett. 12 060015

    [13]

    Niu H 1983 Proceedings of SPIE on High Speed Photography and Photonics San Diego, March 1, 1983 p231

    [14]

    Weiland T 1996 Int. J. Numer. Model. Electron. Network. Dev. Field. 9 295

    [15]

    Hua Z Y, Gu C X 1993 Electron Optics (Shanghai: Fudan University Press) p241 (in Chinese) [华中一, 顾昌鑫 1993 电子光学 (上海: 复旦大学出版社)第 241 页]

    [16]

    Liu H B 2004 M. S. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics of CAS) (in Chinese) [刘宏波 2004 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [17]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006 Acta Phys. Sin. 55 3368 (in Chinese) [田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰 2006 55 3368]

  • [1]

    Liu R, Tian J S, Li H, Wang Q Q, Wang C, Wen W L, Lu Y, Liu H L, Cao X B, Wang J F, Xu X Y, Wang X 2014 Acta Phys. Sin. 63 058501 (in Chinese) [刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴 2014 63 058501]

    [2]

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501 (in Chinese) [朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 64 098501]

    [3]

    Gelbart A, Redman B C, Light R S, Schwartzlow C A, Griffis A J 2002 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, July 29, 2002 p9

    [4]

    Mclean J W 1999 Proceedings of SPIE on Airborne and In-Water Underwater Imaging Denver, Colorado, USA, October 28, 1999 p10

    [5]

    Gao J, Sun J F, Wang Q 2014 Optik 125 5199

    [6]

    Sun J F, Wang T J, Wang X F, Wei J S, Wang Q 2013 Optik 124 2674

    [7]

    Yang H R, Wu L, Wang X P, Chen C, Yu B, Yang B, Yuan L, Wu L P, Xue Z L, Li G P, Wu B N 2012 Appl. Opt. 51 8825

    [8]

    Gleckler A D 2000 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 5, 2000 p266

    [9]

    Gleckler A D, Gelbart A 2001 Proceedings of SPIE on Laser Radar Technology and Applications Orlando, USA, September 19, 2001 p175

    [10]

    Liu J, Wang Q, Li S, Cheng Y, Wei J 2009 Laser Phys. 19 115

    [11]

    Sun J F, Liu J B, Wang Q 2013 Optik 124 204

    [12]

    Tian Z S, Cui Z H, Zhang L T, Xu T C, Zhang Y C, Fu S Y 2014 Chin. Opt. Lett. 12 060015

    [13]

    Niu H 1983 Proceedings of SPIE on High Speed Photography and Photonics San Diego, March 1, 1983 p231

    [14]

    Weiland T 1996 Int. J. Numer. Model. Electron. Network. Dev. Field. 9 295

    [15]

    Hua Z Y, Gu C X 1993 Electron Optics (Shanghai: Fudan University Press) p241 (in Chinese) [华中一, 顾昌鑫 1993 电子光学 (上海: 复旦大学出版社)第 241 页]

    [16]

    Liu H B 2004 M. S. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics of CAS) (in Chinese) [刘宏波 2004 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)]

    [17]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006 Acta Phys. Sin. 55 3368 (in Chinese) [田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰 2006 55 3368]

  • [1] An Teng-Yuan, Ding Xiao, Wang Bing-Zhong. Time-inversion technique based correction of complex radome radiation beam distortion. Acta Physica Sinica, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [2] Tao Jian-Fei, Xia Qin-Zhi, Liao Lin-Gu, Liu Jie, Liu Xiao-Jing. Theory and application of photoelectron trajectory interference holography for atomic ionization in intense laser field. Acta Physica Sinica, 2022, 71(23): 233206. doi: 10.7498/aps.71.20221296
    [3] Lin Cheng, Zhang Hua-Tang, Sheng Zhi-Hao, Yu Xian-Huan, Liu Peng, Xu Jing-Wen, Song Xiao-Hong, Hu Shi-Lin, Chen Jing, Yang Wei-Feng. Strong field photoelectron holography studied by a generalized quantum-trajectory Monte Carlo method. Acta Physica Sinica, 2016, 65(22): 223207. doi: 10.7498/aps.65.223207
    [4] Hui Dan-Dan, Tian Jin-Shou, Lu Yu, Wang Jun-Feng, Wen Wen-Long, Liang Ling-Liang, Chen Lin. Temporal distortion analysis of the streak tube. Acta Physica Sinica, 2016, 65(15): 158502. doi: 10.7498/aps.65.158502
    [5] Yu Zu-Qing, Yang Wei-Ji, He Feng. Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [6] Zhang Jian, Gao Jin-Song, Xu Nian-Xi, Yu Miao. Design and study of frequency selective surface based on hybrid period metallic mesh. Acta Physica Sinica, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [7] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [8] Huang Yong-Xian, Leng Jin-Song, Tian Xiu-Bo, Lü Shi-Xiong, Li Yao. The study on adaptability and effect of mesh-inducing for plasma immersion ion implantation on non-conductor polymer. Acta Physica Sinica, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [9] Li Fei, Xiao Liu, Liu Pu-Kun, Yi Hong-Xia, Wan Xiao-Sheng. A study on the cut-off amplification factor of the grid with film sphere and porous structure in grid- controlled electron gun. Acta Physica Sinica, 2012, 61(7): 078502. doi: 10.7498/aps.61.078502
    [10] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [11] Liu Bin, Jin Wei-Qi, Dong Li-Quan. The diffraction effect in a thermal imaging system with a front wire grid. Acta Physica Sinica, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [12] Ye Chao, Du Wei, Ning Zhao-Yuan, Cheng Shan-Hua. Effect of grid and bias on the characteristic of CHF3 electron cyclot ron resonance discharge plasma. Acta Physica Sinica, 2003, 52(7): 1802-1807. doi: 10.7498/aps.52.1802
    [13] Cang Yu, Zhang Jie, Qiu Yang, Zhang Jun, Peng Lian-Mao. . Acta Physica Sinica, 2002, 51(4): 843-846. doi: 10.7498/aps.51.843
    [14] FAN XI-JUN, TIAN SHU-FEN, LI JIAN, LIU JIE, BAI CHENG-JIE. TIME EVOLUTION OF ATOMIC RESPONSE AND LIGHT AMPLIFICATION MECHANISM IN AN OPEN I NVERSIONLESS LASING SYSTEM. Acta Physica Sinica, 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [15] WANG PING-SHAN, YU SHAO-YING, LEI FANG-YAN, LUO MIN, MA QIAO-SHENG, TAN JIE, GU BIN-LIN. CONFINEMENT OF ELECTRON BEAMS BY MESH ARRAYS IN A RELATIVISTIC KLYSTRON AMPLIFIER. Acta Physica Sinica, 1998, 47(3): 485-493. doi: 10.7498/aps.47.485
    [16] SHU XIAO-JIAN. ELECTRON TRAJECTORIES AND STABILITY IN FEL WITH AN AXIAL GUIDE MAGNETIC FIELD. Acta Physica Sinica, 1991, 40(10): 1624-1631. doi: 10.7498/aps.40.1624
    [17] HUANG GUO-SONG, ZHOU FENG, GU SHAO-TING, ZHANG GUO-XUAN, CHEN ZE-XING. THERMAL DISTORTION OF Nd: GLASS HOLLOW CYLINDER LASERS. Acta Physica Sinica, 1990, 39(3): 367-374. doi: 10.7498/aps.39.367
    [18] CHENG CHENG, SUN WEI, TANG CHUAN-SHUN. TIME RESOLVED ELECTRON TEMPERATURE AND DENSITY IN A PULSED LASER PLASMA. Acta Physica Sinica, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
    [19] XIMEN JI-YE. ON THE LINEAR TRANSFORMATIONS OF GAUSSIAN TRAJEC-TORY PARAMETERS AND THEIR INFLUENCE UPON ELECTRON OPTICAL ABERRATIONS. Acta Physica Sinica, 1981, 30(4): 472-477. doi: 10.7498/aps.30.472
    [20] . Acta Physica Sinica, 1966, 22(2): 233-244. doi: 10.7498/aps.22.233
Metrics
  • Abstract views:  7022
  • PDF Downloads:  301
  • Cited By: 0
Publishing process
  • Received Date:  17 August 2015
  • Accepted Date:  18 September 2015
  • Published Online:  05 January 2016

/

返回文章
返回
Baidu
map