搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究

唐小锋 牛铭理 周晓国 刘世林

引用本文:
Citation:

基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究

唐小锋, 牛铭理, 周晓国, 刘世林

Spectroscopic studies of molecular ions and their dissociation dynamics by the threshold photoelectron-photoion coincidence

Tang Xiao-Feng, Niu Ming-Li, Zhou Xiao-Guo, Liu Shi-Lin
PDF
导出引用
  • 对电子和离子同时采用速度聚焦电场收集的阈值光电子-光离子符合成像谱仪能够有效提高电子的收集效率和能量分辨率.利用该符合成像谱仪,开展了Xe/Ar/Ne 惰性混合气体及NO 分子的阈值光电子谱、阈值光电子-光离子符合质谱和质量选择的符合光谱等实验研究,精确测量了NO 分子的电离势,并且获得了NO+离子振动态分辨的X1Σ+,c3Π和B1
    In a recently built threshold photoelectron-photoion coincidence spectrometer, the photoelectrons and photoions were velocity-focused simultaneously to effectively improve the collection efficiency and the energy resolution. With this spectrometer we measured the threshold photoelectron spectra (TPES) and the mass-selected threshold photoelectron-photoion coincidence mass spectra (TPEPICO-MS) of NO molecules, as well as Xe/Ar/Ne rare gas mixtures. The ionization potential of NO was accurately determined, and the vibrationally resolved TPES spectra of the X1Σ+, c3Π and B1Π states of NO+ were obtained. Subsequently, the dissociation dynamics of the c3Π state of NO+ were studied by measuring the TPEPICO-MS and fitting the time-of-flight profile of the N+ fragment. The overall kinetic energy released from dissociation was determined to be 0.717 eV.
    • 基金项目: 国家自然科学基金(批准号:21027005,10979042 )、国家重点基础研究发展计划(批准号:2007CB815204)和教育部创新计划同步辐射研究生创新基金(批准号:20080141S )资助的课题.
    [1]

    Johnson P M, Otis C E 1981 Ann. Rev. Phys. Chem. 32 139

    [2]

    Ashfold M N R, Howe J D 1994 Ann. Rev. Phys. Chem. 45 57

    [3]

    Xu H F, Guo Y, Li Q F, Shi Y, Liu S L, Ma X X 2004 J. Chem. Phys. 121 3069

    [4]

    Wang H, Liu S L, Liu J, Wang F Y, Jang B, Yang X M 2008 Acta Phys. Sin. 57 796(in Chinese) [汪 华、刘世林、刘 杰、王凤燕、姜 波、杨学明 2008 57 796]

    [5]

    Baer T 2000 Int. J. Mass Spectrom. 200 443

    [6]

    Ng C Y 2002 Ann. Rev. Phys. Chem. 53 101

    [7]

    Huang C Q, Yang B, Yang R, Wang J, Wei L X, Shan X B, Sheng L S, Zhang Y W, Qi F 2005 Rev. Sci. Instrum. 76 126108

    [8]

    Brehm B, Puttkamer E V 1967 Z. Naturforsch. 22 A 8

    [9]

    Eland J H D 1973 Int. J. Mass Spectrom. Ion Phys. 12 389

    [10]

    Werner A S, Baer T 1975 J. Chem. Phys. 62 2900

    [11]

    Stockbauer R 1973 J. Chem. Phys. 58 3800

    [12]

    Baer T 1979 Gas Phase Ion Chemistry (Vol. 1) (New York: Academic) p153

    [13]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [14]

    Baer T, Li Y 2002 Int. J. Mass Spectrom. 219 381

    [15]

    Sztaray B, Baer T 2003 Rev. Sci. Instrum. 74 3763

    [16]

    Bodi A, Johnson M, Gerber T, Gengeliczki Z, Sztaray B, Baer T 2009 Rev. Sci. Instrum. 80 034101

    [17]

    Garcia G A, Soldi-Lose H, Nahon L 2009 Rev. Sci. Instrum. 80 023102

    [18]

    Tang X F, Zhou X G, Niu M L, Liu S L, Sun J D, Shan X B, Liu F Y, Sheng L S 2009 Rev. Sci. Instrum. 80 113101

    [19]

    Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 J. Synchrotron. Radiat. 13 415

    [20]

    Edqvist O, Asbrink L, Lindholm E 1971 Z. Naturforsch. 26 A 1407

    [21]

    Eland J H D 1978 J. Chem. Phys. 70 2926

    [22]

    Lu Y, Stolte W C, Samson J A R 1997 J. Electr. Spectr. Relat. Phenom. 87 109

    [23]

    Eland J H D, Duerr E J 1997 Chem. Phys. 229 1

    [24]

    Jarvis G K, Evans M, Ng C Y, Mitsuke K 1999 J. Chem. Phys. 111 3058

    [25]

    Wang S S, Kong R H, Tian Z Y, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 Acta Phys. Sin. 55 3433 (in Chinese) [王思胜、孔蕊弘、田振玉、单晓斌、张允武、盛六四、王振亚、郝立庆、周士康 2006 55 3433]

    [26]

    Franklin J L, Hierl P M, Whan D A 2004 J. Chem. Phys. 47 3148

    [27]

    Weitzel K M, Mahnert J 2002 Int. J. Mass Spectrom. 214 175

    [28]

    Xu H F, Li Q F, Zhou X G, Dai J H, Liu S L, Ma X X 2004 Acta Phys. Sin. 53 1759 (in Chinese) [徐海峰、李奇峰、周晓国、戴静华、刘世林、马兴孝 2004 53 1759]

    [29]

    Shi Y, Li Q F, Wang H, Dai J H, Liu S L, Ma X X 2005 Acta Phys. Sin. 54 2418 (in Chinese) [石 勇、李奇峰、汪 华、戴静华、刘世林、马兴孝 2005 54 2418]

    [30]

    Seccombe D P, Chim R Y L, Jarvis G K, Tuckett R P 2000 Phys. Chem. Chem. Phys. 2 769

    [31]

    Guthe F, Malow M, Weitzel K M, Baumgartel H 1998 Int. J. Mass Spectrom. Ion Proc. 172 47

    [32]

    Zhang L M, Wang F, Wang Z, Yu S Q, Liu S L, Ma X X 2004 J. Phys. Chem. A 108 1342

  • [1]

    Johnson P M, Otis C E 1981 Ann. Rev. Phys. Chem. 32 139

    [2]

    Ashfold M N R, Howe J D 1994 Ann. Rev. Phys. Chem. 45 57

    [3]

    Xu H F, Guo Y, Li Q F, Shi Y, Liu S L, Ma X X 2004 J. Chem. Phys. 121 3069

    [4]

    Wang H, Liu S L, Liu J, Wang F Y, Jang B, Yang X M 2008 Acta Phys. Sin. 57 796(in Chinese) [汪 华、刘世林、刘 杰、王凤燕、姜 波、杨学明 2008 57 796]

    [5]

    Baer T 2000 Int. J. Mass Spectrom. 200 443

    [6]

    Ng C Y 2002 Ann. Rev. Phys. Chem. 53 101

    [7]

    Huang C Q, Yang B, Yang R, Wang J, Wei L X, Shan X B, Sheng L S, Zhang Y W, Qi F 2005 Rev. Sci. Instrum. 76 126108

    [8]

    Brehm B, Puttkamer E V 1967 Z. Naturforsch. 22 A 8

    [9]

    Eland J H D 1973 Int. J. Mass Spectrom. Ion Phys. 12 389

    [10]

    Werner A S, Baer T 1975 J. Chem. Phys. 62 2900

    [11]

    Stockbauer R 1973 J. Chem. Phys. 58 3800

    [12]

    Baer T 1979 Gas Phase Ion Chemistry (Vol. 1) (New York: Academic) p153

    [13]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [14]

    Baer T, Li Y 2002 Int. J. Mass Spectrom. 219 381

    [15]

    Sztaray B, Baer T 2003 Rev. Sci. Instrum. 74 3763

    [16]

    Bodi A, Johnson M, Gerber T, Gengeliczki Z, Sztaray B, Baer T 2009 Rev. Sci. Instrum. 80 034101

    [17]

    Garcia G A, Soldi-Lose H, Nahon L 2009 Rev. Sci. Instrum. 80 023102

    [18]

    Tang X F, Zhou X G, Niu M L, Liu S L, Sun J D, Shan X B, Liu F Y, Sheng L S 2009 Rev. Sci. Instrum. 80 113101

    [19]

    Wang S S, Kong R H, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 J. Synchrotron. Radiat. 13 415

    [20]

    Edqvist O, Asbrink L, Lindholm E 1971 Z. Naturforsch. 26 A 1407

    [21]

    Eland J H D 1978 J. Chem. Phys. 70 2926

    [22]

    Lu Y, Stolte W C, Samson J A R 1997 J. Electr. Spectr. Relat. Phenom. 87 109

    [23]

    Eland J H D, Duerr E J 1997 Chem. Phys. 229 1

    [24]

    Jarvis G K, Evans M, Ng C Y, Mitsuke K 1999 J. Chem. Phys. 111 3058

    [25]

    Wang S S, Kong R H, Tian Z Y, Shan X B, Zhang Y W, Sheng L S, Wang Z Y, Hao L Q, Zhou S K 2006 Acta Phys. Sin. 55 3433 (in Chinese) [王思胜、孔蕊弘、田振玉、单晓斌、张允武、盛六四、王振亚、郝立庆、周士康 2006 55 3433]

    [26]

    Franklin J L, Hierl P M, Whan D A 2004 J. Chem. Phys. 47 3148

    [27]

    Weitzel K M, Mahnert J 2002 Int. J. Mass Spectrom. 214 175

    [28]

    Xu H F, Li Q F, Zhou X G, Dai J H, Liu S L, Ma X X 2004 Acta Phys. Sin. 53 1759 (in Chinese) [徐海峰、李奇峰、周晓国、戴静华、刘世林、马兴孝 2004 53 1759]

    [29]

    Shi Y, Li Q F, Wang H, Dai J H, Liu S L, Ma X X 2005 Acta Phys. Sin. 54 2418 (in Chinese) [石 勇、李奇峰、汪 华、戴静华、刘世林、马兴孝 2005 54 2418]

    [30]

    Seccombe D P, Chim R Y L, Jarvis G K, Tuckett R P 2000 Phys. Chem. Chem. Phys. 2 769

    [31]

    Guthe F, Malow M, Weitzel K M, Baumgartel H 1998 Int. J. Mass Spectrom. Ion Proc. 172 47

    [32]

    Zhang L M, Wang F, Wang Z, Yu S Q, Liu S L, Ma X X 2004 J. Phys. Chem. A 108 1342

  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望.  , 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 王景哲, 董福龙, 刘杰. 时间延迟双色飞秒激光中 H2+的解离动力学研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241283
    [3] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用.  , 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [4] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [5] 张瑶, 汤善治, 李明, 王立超, 高俊祥. 同步辐射中双压电片反射镜的研究现状.  , 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [6] 马国亮, 杨剑群, 李兴冀, 刘超铭, 侯春风. 电子辐照聚乙烯/碳纳米管拉伸变形机理.  , 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [7] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究.  , 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [8] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究.  , 2013, 62(5): 053602. doi: 10.7498/aps.62.053602
    [9] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正.  , 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [10] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用.  , 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [11] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究.  , 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [12] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究.  , 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [13] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征.  , 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [14] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析.  , 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [15] 张文华, 莫 雄, 王国栋, 王立武, 徐法强, 潘海斌, 施敏敏, 陈红征, 汪 茫. 苯并咪唑苝与金属Ag的界面电子结构研究.  , 2007, 56(8): 4936-4942. doi: 10.7498/aps.56.4936
    [16] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析.  , 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [17] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [18] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [19] 邹崇文, 孙 柏, 王国栋, 张文华, 徐彭寿, 潘海斌, 徐法强, 尹志军, 邱 凯. 低覆盖度的Au/GaN(0001)界面的同步辐射研究.  , 2005, 54(8): 3793-3798. doi: 10.7498/aps.54.3793
    [20] 孟春霞, 黄世华, 由芳田, 常建军, 彭洪尚, 陶 冶, 张国斌. YAG:Pr3+的真空紫外光谱分析及其4f5d能级的研究.  , 2005, 54(11): 5468-5473. doi: 10.7498/aps.54.5468
计量
  • 文章访问数:  8453
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-16
  • 修回日期:  2010-02-21
  • 刊出日期:  2010-05-05

/

返回文章
返回
Baidu
map