Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study on thermodynamic properties of CdxZn1-xO alloys

Luo Ming-Hai Li Ming-Kai Zhu Jia-Kun Huang Zhong-Bing Yang Hui He Yun-Bin

Citation:

First-principles study on thermodynamic properties of CdxZn1-xO alloys

Luo Ming-Hai, Li Ming-Kai, Zhu Jia-Kun, Huang Zhong-Bing, Yang Hui, He Yun-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bandgap engineering is one of the keys to practical applications of ZnO. Using ternary ZnMeO (Me=Be, Mg, Cd, etc.) alloys to regulate the bandgap of ZnO has been widely studied. Alloying ZnO with CdO to form CdxZn1-xO is an effective way to narrow down the bandgap of ZnO. With its narrower bandgap, CdxZn1-xO is a promising candidate for fabricating optoelectronic devices operable in the UV-visible wavelength region. In this work, we study the thermodynamic properties of CdxZn1-xO alloys of both wurtzite (WZ) and rock salt (RS) structures by first-principles calculations based on density functional theory (DFT) combined with the cluster expansion approach. The effective cluster interactions (ECIs) fitted formation energies agree well with the DFT-calculated formation energies for different compositions and structures correspondingly, validating the cluster expansion approach in calculations of the formation energy for CdxZn1-xO alloys. It is found that, for both WZ-CdxZn1-xO and RS-CdxZn1-xO alloys, the ECIs involve pair, triplet and quadruplet interactions: the pair interactions are dominant and contribute mostly to the formation energy. The first-and second-neighbor pair interaction parameters of WZ-CdxZn1-xO are positive, which indicates a tendency of ordering in WZ-CdxZn1-xO. For RS-CdxZn1-xO alloys, the nearest-neighbor pair interaction is negative, indicating a tendency to phase separation. The dominant positive second-neighbor pair interaction, however, appears to favor the ordering tendency. For both the WZ-CdxZn1-xO and RS-CdxZn1-xO alloys, the calculated formation energy of most structures is positive in the whole composition range, except for WZ-CdxZn1-xO with Cd concentrations of 1/3 and 2/3. Then, the crystal and electronic band structures of the metastable WZ-Cd1/3Zn2/3O and WZ-Cd2/3Zn1/3O are calculated. It turns out that both lattice constants a and c increase while the value of c/a and the bond angle of OZn(Cd)O decrease with increasing Cd concentration in the WZ-CdxZn1-xO alloys. Analyses of the band structures, densities of states (DOSs) and partial densities of states of WZ-CdxZn1-xO alloys reveal that the valence band maximum (VBM) is determined by O-2 p states and the conduction band minimum (CBM) stems from the hybrid Cd-5 s and Zn-4 s orbital. The VBM rises while the CBM declines, leading to the decrease of the bandgap of WZ-CdxZn1-xO with increasing Cd concentration. At finite temperatures, the thermal stability of the solid-state system is determined by Gibbs free energy. The bimodal curve, which indicates the equilibrium solubility limits as a function of temperature, can be calculated by the common tangent approach from the Gibbs free energy. The critical temperatures, above which complete miscibility is possible for some concentrations, are 1000 and 2250 K for WZ and RS phases, respectively. The higher critical temperature implies that it is more difficult to form RS-CdxZn1-xO than to form WZ-CdxZn1-xO. Finally, the phase diagrams of WZ-CdxZn1-xO and RS-CdxZn1-xO are derived based on calculations of the Gibbs free energy. At 1600 K, the solubility of Cd in WZ-ZnO amounts to 0.13, while the solubility of Zn in RS-CdO limits to only 0.01, indicating that it is much easier to incorporate Cd into WZ-ZnO than to incorporate Zn into RS-CdO.
      Corresponding author: He Yun-Bin, ybhe@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572073, 61274010, 11574074), the Natural Science Foundation of Hubei Province (Grant Nos. 2015CFB265, 2015CFA038) and Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20124208110005, 20124208120006).
    [1]

    Yang W F, Chen R, Liu B, Wong L M, Wang S J, Sun H D 2011 J. Appl. Phys. 109 113521

    [2]

    Sadofev S, Blumstengel S, Cui J, Puls J, Rogaschewski S, Schaefer P, Henneberger F 2006 Appl. Phys. Lett. 89 201907

    [3]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M {2005 Nat. Mater. 4 42

    [4]

    Chung K, Lee C, Yi G C 2010 Science 330 655

    [5]

    Ma X Y, Chen P L, Zhang R J, Yang D R 2011 J. Alloys. Compd. 509 6599

    [6]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237

    [7]

    Bertram F, Giemsch S, Forster D, Christen J, Kling R, Kirchner C, Waag A 2006 Appl. Phys. Lett. 88 061915

    [8]

    Sakurai K, Takagi T, Kubo T, Kajita D, Tanabe T, Takasu H, Fujita S, Fujita S 2002 J. Cryst. Growth 237-239 514

    [9]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N, 2007 Solid State Commun. 144 5

    [10]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [11]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys.: Condens. Matter 20 235221

    [12]

    Ravi C, Sahu H K, Valsakumar M C, van de Walle A 2010 Phys. Rev. B 81 104111

    [13]

    Hohenberg P, Kohn W {1964 Phys. Rev. B 136 B864

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M 2009 J. Phys.: Condens. Matter 21 395502

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [18]

    Van de Walle A, Asta M, Ceder G 2002 CALPHAD 26 539

    [19]

    Yin W J, Dai L L, Zhang L, Yang R, Li L W, Guo T, Yan Y F 2014 J. Appl. Phys. 115 023707

    [20]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Zeng X C, Pan B C 2015 Nanoscale 7 9852

    [21]

    Pu C Y, Tang X, L H F, Zhang Q Y 2011 Acta Phys. Sin. 60 037101 (in Chinese) [濮春英, 唐鑫, 吕海峰, 张庆瑜 2011 60 037101]

    [22]

    Ravi C, Panigrahi B K, Valsakumar M C, van de Walle A 2012 Phys. Rev. B 85 054202

    [23]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [24]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [25]

    Jaffe J, Snyder J, Lin Z, Hess A {2000 Phys. Rev. B 62 1660

    [26]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [27]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109

    [28]

    Kuisma M, Ojanen J, Enkovaara J, Rantalal T T 2010 Phys. Rev. B 82 115106

    [29]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys.-Chim. Sin. 24 1233 (in Chinese) [孙慧卿, 丁少锋, 王雨田, 邓贝, 范广涵 2008 物理化学学报 24 1233]

    [30]

    Powell R A, Spicer W E, McMenamin J C 1971 Phys. Rev. Lett. 27 97

    [31]

    Kang H S, Lim S H, Kim J W, Chang H W, Kim G H, Kim J H, Lee S Y, Li Y, Lee J S, Lee J K, Nastasi M A, Crooker S A, Jia Q X 2006 J. Cryst. Growth 287 70

    [32]

    Liu J Z, Van de Walle A, Ghosh G, Asta M 2005 Phys. Rev. B 72 144109

    [33]

    Gan C K, Fan X F, Kuo J L 2010 Comp. Mater. Sci. 49 S29

    [34]

    Madelung O M 2004 Semiconductors: Data Handbook (Berlin: Springer) pp173-241

  • [1]

    Yang W F, Chen R, Liu B, Wong L M, Wang S J, Sun H D 2011 J. Appl. Phys. 109 113521

    [2]

    Sadofev S, Blumstengel S, Cui J, Puls J, Rogaschewski S, Schaefer P, Henneberger F 2006 Appl. Phys. Lett. 89 201907

    [3]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M {2005 Nat. Mater. 4 42

    [4]

    Chung K, Lee C, Yi G C 2010 Science 330 655

    [5]

    Ma X Y, Chen P L, Zhang R J, Yang D R 2011 J. Alloys. Compd. 509 6599

    [6]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237

    [7]

    Bertram F, Giemsch S, Forster D, Christen J, Kling R, Kirchner C, Waag A 2006 Appl. Phys. Lett. 88 061915

    [8]

    Sakurai K, Takagi T, Kubo T, Kajita D, Tanabe T, Takasu H, Fujita S, Fujita S 2002 J. Cryst. Growth 237-239 514

    [9]

    Miloua R, Miloua F, Arbaoui A, Kebbab Z, Benramdane N, 2007 Solid State Commun. 144 5

    [10]

    Tang X, L H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐鑫, 吕海峰, 马春雨, 赵纪军, 张庆瑜 2008 57 1066]

    [11]

    Fan X F, Sun H D, Shen Z X, Kuo J L, Lu Y M 2008 J. Phys.: Condens. Matter 20 235221

    [12]

    Ravi C, Sahu H K, Valsakumar M C, van de Walle A 2010 Phys. Rev. B 81 104111

    [13]

    Hohenberg P, Kohn W {1964 Phys. Rev. B 136 B864

    [14]

    Giannozzi P, Baroni S, Bonini N, Calandra M 2009 J. Phys.: Condens. Matter 21 395502

    [15]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [16]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [17]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [18]

    Van de Walle A, Asta M, Ceder G 2002 CALPHAD 26 539

    [19]

    Yin W J, Dai L L, Zhang L, Yang R, Li L W, Guo T, Yan Y F 2014 J. Appl. Phys. 115 023707

    [20]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Zeng X C, Pan B C 2015 Nanoscale 7 9852

    [21]

    Pu C Y, Tang X, L H F, Zhang Q Y 2011 Acta Phys. Sin. 60 037101 (in Chinese) [濮春英, 唐鑫, 吕海峰, 张庆瑜 2011 60 037101]

    [22]

    Ravi C, Panigrahi B K, Valsakumar M C, van de Walle A 2012 Phys. Rev. B 85 054202

    [23]

    Decremps F, Datchi F, Saitta A M, Polian A 2003 Phys. Rev. B 68 104101

    [24]

    Schleife A, Fuchs F, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 245212

    [25]

    Jaffe J, Snyder J, Lin Z, Hess A {2000 Phys. Rev. B 62 1660

    [26]

    Guerrero-Moreno R J, Takeuchi N 2002 Phys. Rev. B 66 205205

    [27]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109

    [28]

    Kuisma M, Ojanen J, Enkovaara J, Rantalal T T 2010 Phys. Rev. B 82 115106

    [29]

    Sun H Q, Ding S F, Wang Y T, Deng B, Fan G H 2008 Acta Phys.-Chim. Sin. 24 1233 (in Chinese) [孙慧卿, 丁少锋, 王雨田, 邓贝, 范广涵 2008 物理化学学报 24 1233]

    [30]

    Powell R A, Spicer W E, McMenamin J C 1971 Phys. Rev. Lett. 27 97

    [31]

    Kang H S, Lim S H, Kim J W, Chang H W, Kim G H, Kim J H, Lee S Y, Li Y, Lee J S, Lee J K, Nastasi M A, Crooker S A, Jia Q X 2006 J. Cryst. Growth 287 70

    [32]

    Liu J Z, Van de Walle A, Ghosh G, Asta M 2005 Phys. Rev. B 72 144109

    [33]

    Gan C K, Fan X F, Kuo J L 2010 Comp. Mater. Sci. 49 S29

    [34]

    Madelung O M 2004 Semiconductors: Data Handbook (Berlin: Springer) pp173-241

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Zhou Jin-Ping, Li Chun-Mei, Jiang Bo, Huang Ren-Zhong. First-principles study of Co and Ni excess effects on crystal structure and phase stability of Co2NiGa alloy. Acta Physica Sinica, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [3] Shi Xiao-Hong, Hou Bin-Peng, Li Zhi-Shuo, Chen Jing-Jin, Shi Xiao-Wen, Zhu Zi-Zhong. Formation of oxygen vacancy clusters in Li-rich Mn-based cathode Materials of lithium-ion batteries: First-principles calculations. Acta Physica Sinica, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [4] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [5] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [6] Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping. Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study. Acta Physica Sinica, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [7] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [8] Chen Dong-Yun, Gao Ming, Li Yong-Hua, Xu Fei, Zhao Lei, Ma Zhong-Quan. First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO3/Si interface. Acta Physica Sinica, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [9] Mo Man, Zeng Ji-Shu, He Hao, Zhang Liang, Du Long, Fang Zhi-Jie. The first-principle study on the formation energies of Be, Mg and Mn doped CuInO2. Acta Physica Sinica, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [10] Liu Qi, Guan Peng-Fei. First principle study on atomic structure of La65X35(X=Ni, Al) metallic glasses. Acta Physica Sinica, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [11] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [12] Chen Jia-Hua, Liu En-Ke, Li Yong, Qi Xin, Liu Guo-Dong, Luo Hong-Zhi, Wang Wen-Hong, Wu Guang-Heng. First-principles investigations on tetragonal distortion, electronic structure, magnetism, and phonon dispersion of Ga2XCr (X = Mn, Fe, Co, Ni, Cu) Heusler alloys. Acta Physica Sinica, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [13] Zhang Wei, Xu Zhao-Peng, Wang Hai-Yan, Chen Fei-Hong, He Chang. First-principles study of the native defects in InI crystal. Acta Physica Sinica, 2013, 62(24): 243101. doi: 10.7498/aps.62.243101
    [14] Hao Hong-Fei, Wang Jing, Sun Feng, Zhang Lan-Ting. First-principles calculation of preferential site occupation of Dy ions in Nd2Fe14B lattice and its effect on local magnetic moments of Fe ions. Acta Physica Sinica, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [15] Tang Dong-Hua, Xue Lin, Sun Li-Zhong, Zhong Jian-Xin. Doping effect of boron in Hg0.75Cd0.25Te: first-principles study. Acta Physica Sinica, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [16] Li Hong, Wang Shao-Qing, Ye Heng-Qiang. Influence of Nb doping on oxidation resistance of γ-TiAl:A first principles study. Acta Physica Sinica, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [17] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [18] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] Ye Hong-Gang, Chen Guang-De, Zhu You-Zhang, Zhang Jun-Wu. First principle study of the native defects in hexagonal aluminum nitride. Acta Physica Sinica, 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
    [20] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
Metrics
  • Abstract views:  6408
  • PDF Downloads:  490
  • Cited By: 0
Publishing process
  • Received Date:  22 April 2016
  • Accepted Date:  31 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map