-
The structures of six possible native point defects (I and In vacancies, I and In antisites, I and In interstitials) that maybe exist in the orthorhombic indium iodide (InI) crystal are optimized and investigated by the first-principles calculations based on density functional theory. The levels of difficulty in forming defects in their growth processes are obtained by calculating the defect energy levels; the position of each kind of energy level of native point defect and its effect on carrier transport are analyzed via calculating the density of states. The results show that the dominant low-energy defect of In interstitial induces a recombination center and a deep hole trap: the former shortens the lifetime of the minority carriers and the latter captures the holes from the valence band, thereby reducing the mobility-lifetime product of the hole. The calculation results provide a theoretical guidance for improving the mobility-lifetime product of carriers in InI crystal and also are helpful in obtaining the excellent materials for detecting the nuclear radiation of InI crystal.
-
Keywords:
- InI /
- formation energy /
- defect energy levels /
- deep hole trap
[1] Runkle R C, Smith L E, Peurrung A J 2009 J. Appl. Phys. 106 041101
[2] Du M H, Singh D J 2010 Phys. Rev. B 82 045203
[3] Jin F, Itoh T, Goto T 1989 J. Phys. Soc. Jpn. 58 2586
[4] Jones R E, Templeton D H 1955 Acta Crystallogr. 8 847
[5] Zhang M G, Yan H Y, Zhang G T, Wei Q, Wang H 2011 Physica B 407 398
[6] Peretti E A 1956 J. Am. Chem. Soc. 78 5745
[7] Levy F, Mooser E 1972 Helv. Phys. Acta 3 69
[8] Ohno N, Fujita M, Nakai Y, Nakamura K 1978 Solid State Commun. 28 137
[9] Nakamura K, Nobuhito O, Masami F, Yoshio N 1979 J. Lumin. 18-19 381
[10] Shah K S, Moy L P, Zhang J, Misra M M, Moses W W 1992 SPIE 1734 161
[11] Kolinko M I 1994 J. Phys. 6 183
[12] Oondera T, Hitomi K, Shoji T 2006 IEEE Trans. Nucl. Sci. 50 3055
[13] Nicoara I, Dicoara N, Bertorello C, Slack G A, Ostrogorsky A G, Groza M, Burger A 2011 Mater. Res. Soc. Symp. Proc. 1341 95
[14] Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) p577 (in Chinese) [介万奇2010晶体生长原理与技术(北京: 科学出版社) 第577页]
[15] Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S 2004 Surf. Sci. 566 122
[16] Chahed A, Benhelal O, Laksari S, Abbar B, Bouhafs B, Aourag H 2005 Physica B 367 142
[17] Li G Q, Zhang X C, Ding G Y, Fan C M, Liang Z H, Han P D 2013 Acta Phys. Sin. 62 127301 (in Chinese) [李国旗, 张小超, 丁光月, 樊彩梅, 梁振海, 韩培德 2013 62 127301]
[18] Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 56 5376]
[19] Bourgoin J C, von Bardeleben H J, Stie-venard D 1988 J. Appl. Phys. 64 65
[20] Zhang M, Zhang C H, Shen J 2011 Chin. Phys. B 20 017101
[21] Wang A L, Wu Z M, Wang C, Hu A Y, Zhao R Y 2013 Acta Phys. Sin. 62 137101 (in Chinese) [王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺 2013 62 137101]
[22] van de Walle C G, Neugebauer J 2004 J. Appl. Phys. Rev. 95 3851
[23] Haynes W M 2011 Handbook of Chemistry and Physics (Boca Raton: CRC Press) pp5–14
[24] Ding S F, Fan G H, Li S T, Xiao B 2007 Acta Phys. Sin. 56 4062 (in Chinese) [丁少锋, 范广涵, 李述体, 肖冰 2007 56 4062]
[25] Biswas K, Du M H 2011 Appl. Phys. 109 113
-
[1] Runkle R C, Smith L E, Peurrung A J 2009 J. Appl. Phys. 106 041101
[2] Du M H, Singh D J 2010 Phys. Rev. B 82 045203
[3] Jin F, Itoh T, Goto T 1989 J. Phys. Soc. Jpn. 58 2586
[4] Jones R E, Templeton D H 1955 Acta Crystallogr. 8 847
[5] Zhang M G, Yan H Y, Zhang G T, Wei Q, Wang H 2011 Physica B 407 398
[6] Peretti E A 1956 J. Am. Chem. Soc. 78 5745
[7] Levy F, Mooser E 1972 Helv. Phys. Acta 3 69
[8] Ohno N, Fujita M, Nakai Y, Nakamura K 1978 Solid State Commun. 28 137
[9] Nakamura K, Nobuhito O, Masami F, Yoshio N 1979 J. Lumin. 18-19 381
[10] Shah K S, Moy L P, Zhang J, Misra M M, Moses W W 1992 SPIE 1734 161
[11] Kolinko M I 1994 J. Phys. 6 183
[12] Oondera T, Hitomi K, Shoji T 2006 IEEE Trans. Nucl. Sci. 50 3055
[13] Nicoara I, Dicoara N, Bertorello C, Slack G A, Ostrogorsky A G, Groza M, Burger A 2011 Mater. Res. Soc. Symp. Proc. 1341 95
[14] Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) p577 (in Chinese) [介万奇2010晶体生长原理与技术(北京: 科学出版社) 第577页]
[15] Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S 2004 Surf. Sci. 566 122
[16] Chahed A, Benhelal O, Laksari S, Abbar B, Bouhafs B, Aourag H 2005 Physica B 367 142
[17] Li G Q, Zhang X C, Ding G Y, Fan C M, Liang Z H, Han P D 2013 Acta Phys. Sin. 62 127301 (in Chinese) [李国旗, 张小超, 丁光月, 樊彩梅, 梁振海, 韩培德 2013 62 127301]
[18] Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 56 5376]
[19] Bourgoin J C, von Bardeleben H J, Stie-venard D 1988 J. Appl. Phys. 64 65
[20] Zhang M, Zhang C H, Shen J 2011 Chin. Phys. B 20 017101
[21] Wang A L, Wu Z M, Wang C, Hu A Y, Zhao R Y 2013 Acta Phys. Sin. 62 137101 (in Chinese) [王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺 2013 62 137101]
[22] van de Walle C G, Neugebauer J 2004 J. Appl. Phys. Rev. 95 3851
[23] Haynes W M 2011 Handbook of Chemistry and Physics (Boca Raton: CRC Press) pp5–14
[24] Ding S F, Fan G H, Li S T, Xiao B 2007 Acta Phys. Sin. 56 4062 (in Chinese) [丁少锋, 范广涵, 李述体, 肖冰 2007 56 4062]
[25] Biswas K, Du M H 2011 Appl. Phys. 109 113
计量
- 文章访问数: 7057
- PDF下载量: 634
- 被引次数: 0