-
基于密度泛函理论的第一性原理方法,通过形成能和束缚能的计算研究了B在Hg0.75Cd0.25Te 中的掺杂效应.结果表明B在Hg0.75Cd0.25Te中存在着两种主要形态:第一种是在完整的 Hg0.75Cd0.25Te材料中B稳定存在于六角间隙位置而非替位.此时,B形成容易激活的三级施主使材料表现为n型.另一种是在有Hg空位存在的Hg0.75Cd0.25Te中B更容易与Hg空位结合形成缺陷复合体,其束缚能达到了0.96 eV.这种复合体在Hg0.75Cd0.25Te材料中形成单施主也使材料表现为n型.考虑到辐照损伤形成的Hg空位受主,这种B与Hg空位的复合体是制约B离子在MCT中注入激活的一个重要因素.Using the first-principles method based on the density functional theory, we study the doping effect of B impurity in HgCdTe (MCT).We find that the most stable configuration of the impurity is at the B hexagonal interstitial position, rather than at the in-situ substitution. The electronic structures and the density of states of B hexagonal interstitial doped MCT are systematically investigated. Near neighbour (NN) and next-near-neighbor (NNN) atoms around the B impurity are obviously relaxed. The relaxation induces the breaking of NN Te-Hg covalent bond. Moreover, B hexagonal interstitial behaves as triple n-type dopant. The charged state analysis indicates that Bih(2Hg1Cd) with three positive charges is most stable and forms an effecient donor. However, as long as the Hg vacancy exists, complex impurity between Hg vacancy and B impurity can be easily formed, its binding energy reaches up to 0.96 eV. Such complex behaves as single n-type dopant. Considering radiation damage of B ion implantation, the complex is a main factor restricting the activation of B ion in MCT.
-
Keywords:
- mercury cadmium telluride(MCT) /
- B doping /
- formation energy /
- first-principles study
[1] Chen G B, Lu W, Cai W Y 2004 Acta Phys. Sin. 53 3(in Chinese)[陈贵宾,陆卫,蔡炜颖 2004 53 3]
[2] SunL Z, Chen X S, Zhou X H 2005 Acta Phys. Sin. 54 4(in Chinese)[孙立忠,陈效双,周孝好 2005 54 4]
[3] Han J L, Sun L Z, Chen X S, Lu W, Zhong J X 2010 Acta Phys. Sin. 59 2(in Chinese)[韩金良,孙立忠,陈效双,陆卫,钟建新 2010 59 2]
[4] Neumark G F 1997 Mater. Sci. Eng. R 21 1
[5] Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211
[6] Shao J, Lü X, Guo S L, Lu W 2009 Phys. Rev. B 80 155125
[7] Tennant W E, Cockrum C A, Giplin J B, Kinch M A, Reine M A, Ruth R P, Vac J 1992 Sci. Technol. B 10 1359
[8] Huang S H, He J F, Chen J C, Lei C H 2001 Chinese Journal of Semiconductors 22 2(in Chinese)[黄仕华,何景福,陈建才,雷春红 2001 半导体学报 22 5]
[9] Yue F Y, Chen L, Li YW, Hu Z G, Sun L, Yang P X, Chu J H 2010 Chin. Phys. B 19 11 117106
[10] Berding M A, Sher A, Chen A B 1990 J. Appl. Phys. 68 5064
[11] Brding M A, van Schilfgaarde M, Sher A 1994 Phys. Rev. B 50 1519
[12] Reine M B, Sood A K, Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed Willardson R K and Beer A C(Now York:Academic) p246
[13] Chen G B, Li Z F, Cai W Y, He L, Hu X N, Lu W, Shen X C 2003 Acta Phys. Sin 52 6(in Chinese)[陈贵宾,李志锋,蔡炜颖,何力,胡晓宁,陆卫,沈学础 2003 52 6]
[14] Destefans G L 1983 Nucl. Instr. Methods 209/210 567
[15] Destefanis G L 1988 J. Cryst. Growth 86 700
[16] Kim Y H, Kim T S, Redfern D A, Musca C A, Lee H C, Kim C K 2000 J. Electron. Mater. 29 6
[17] White J, Pal R, Dell J M, Musca C A, Antoszewski J, Faraone L, Burke P 2001 J. Electron. Mater. 30 6
[18] Golding T D, Hellmer R, Bubulac L, Dinan J H,Wang L, ZhaoW, Carmody M, Sankur H O, Edwall D 2006 J. Ele-ctron. Mater. 35 6
[19] Manchanda R, Sharma R K, Malik A, Pal R, Dhaul A, Dutt M B, Basu P K, Thakur O P 2007 J. Appl. Phys. 101 116102
[20] Kumar R, Dutt M B, Nath R, Chander R, Gupta S C 1990 J. Appl. Phys. 68 5564
[21] Baars J, Hurrle A, Rothemund W, Fritzsche C R, Jakobus T 1982 J. Appl. Phys. 53 1461
[22] Bahir G, Kalish R, Nemirovsky Y 1982 Appl. Phys. Lett. 41 1057
[23] Kao T M, Sigmon T W 1986 Appl. Phys. Lett. 49 464
[24] Kao TW, Sigmon TW, Bubulac L O 1987 J. Vac. Sci. Technol. A 5 3175
[25] Kao T M, Sigmon T W 1987 Nucl. Instr. and Methods in Phys.Res. B 21 578
[26] Conway K L, OpydWG, GreinerME, Gibbons J F, Sigmon TW, Bubulac L O 1982 Appl. Phys. Lett. 41 750
[27] Bubulac L O 1985 Appl. Phys. Lett. 46 976
[28] Bubulac L O 1988 J. Cryst. Growth 86 723
[29] Wu T B, Lam K Y, Chiang C D, Gong J, Yang S J 1988 J. Appl. Phys. 63 4986
[30] Talipov N Kh, Ovsyuk V N, Remesnik V G, Vasilyev V V 1997 Mater. Sci. and Eng. B 44 266
[31] Lanir M,Wang C C, Vanderwyck A H B 1978 in IEDM Tech. Dig. p421
[32] Perdew J P, Burkeand K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Sun L Z, Chen X S, Zhao J J 2007 Phys. Rev. B 76 045219
[34] Zhang S B, Northrup J E 1991 Phys. Rev. B 67 2339
[35] Pöykkö S, Chadi D J 1999 Phys. Rev. Lett. 83 1231
[36] Makov G, Payne M C 1995 Phys. Rev. B 51 4014
[37] Tanaka T, Matsunaga K, Ikuhara Y, Yamamoto T 2003 Phys. Rev. B 68 205213
[38] Blochl P E, Jepsen Q, Andersen O K 1994 Phys. Rev. B 49 16223
[39] Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397
[40] Wei S H, Zunger A 1991 Phys. Rev. B 43 1662
-
[1] Chen G B, Lu W, Cai W Y 2004 Acta Phys. Sin. 53 3(in Chinese)[陈贵宾,陆卫,蔡炜颖 2004 53 3]
[2] SunL Z, Chen X S, Zhou X H 2005 Acta Phys. Sin. 54 4(in Chinese)[孙立忠,陈效双,周孝好 2005 54 4]
[3] Han J L, Sun L Z, Chen X S, Lu W, Zhong J X 2010 Acta Phys. Sin. 59 2(in Chinese)[韩金良,孙立忠,陈效双,陆卫,钟建新 2010 59 2]
[4] Neumark G F 1997 Mater. Sci. Eng. R 21 1
[5] Wei S H, Zhang S B 2002 Phys. Rev. B 66 155211
[6] Shao J, Lü X, Guo S L, Lu W 2009 Phys. Rev. B 80 155125
[7] Tennant W E, Cockrum C A, Giplin J B, Kinch M A, Reine M A, Ruth R P, Vac J 1992 Sci. Technol. B 10 1359
[8] Huang S H, He J F, Chen J C, Lei C H 2001 Chinese Journal of Semiconductors 22 2(in Chinese)[黄仕华,何景福,陈建才,雷春红 2001 半导体学报 22 5]
[9] Yue F Y, Chen L, Li YW, Hu Z G, Sun L, Yang P X, Chu J H 2010 Chin. Phys. B 19 11 117106
[10] Berding M A, Sher A, Chen A B 1990 J. Appl. Phys. 68 5064
[11] Brding M A, van Schilfgaarde M, Sher A 1994 Phys. Rev. B 50 1519
[12] Reine M B, Sood A K, Tredwell T J 1981 Semiconductors and Semimetals vol 18 ed Willardson R K and Beer A C(Now York:Academic) p246
[13] Chen G B, Li Z F, Cai W Y, He L, Hu X N, Lu W, Shen X C 2003 Acta Phys. Sin 52 6(in Chinese)[陈贵宾,李志锋,蔡炜颖,何力,胡晓宁,陆卫,沈学础 2003 52 6]
[14] Destefans G L 1983 Nucl. Instr. Methods 209/210 567
[15] Destefanis G L 1988 J. Cryst. Growth 86 700
[16] Kim Y H, Kim T S, Redfern D A, Musca C A, Lee H C, Kim C K 2000 J. Electron. Mater. 29 6
[17] White J, Pal R, Dell J M, Musca C A, Antoszewski J, Faraone L, Burke P 2001 J. Electron. Mater. 30 6
[18] Golding T D, Hellmer R, Bubulac L, Dinan J H,Wang L, ZhaoW, Carmody M, Sankur H O, Edwall D 2006 J. Ele-ctron. Mater. 35 6
[19] Manchanda R, Sharma R K, Malik A, Pal R, Dhaul A, Dutt M B, Basu P K, Thakur O P 2007 J. Appl. Phys. 101 116102
[20] Kumar R, Dutt M B, Nath R, Chander R, Gupta S C 1990 J. Appl. Phys. 68 5564
[21] Baars J, Hurrle A, Rothemund W, Fritzsche C R, Jakobus T 1982 J. Appl. Phys. 53 1461
[22] Bahir G, Kalish R, Nemirovsky Y 1982 Appl. Phys. Lett. 41 1057
[23] Kao T M, Sigmon T W 1986 Appl. Phys. Lett. 49 464
[24] Kao TW, Sigmon TW, Bubulac L O 1987 J. Vac. Sci. Technol. A 5 3175
[25] Kao T M, Sigmon T W 1987 Nucl. Instr. and Methods in Phys.Res. B 21 578
[26] Conway K L, OpydWG, GreinerME, Gibbons J F, Sigmon TW, Bubulac L O 1982 Appl. Phys. Lett. 41 750
[27] Bubulac L O 1985 Appl. Phys. Lett. 46 976
[28] Bubulac L O 1988 J. Cryst. Growth 86 723
[29] Wu T B, Lam K Y, Chiang C D, Gong J, Yang S J 1988 J. Appl. Phys. 63 4986
[30] Talipov N Kh, Ovsyuk V N, Remesnik V G, Vasilyev V V 1997 Mater. Sci. and Eng. B 44 266
[31] Lanir M,Wang C C, Vanderwyck A H B 1978 in IEDM Tech. Dig. p421
[32] Perdew J P, Burkeand K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Sun L Z, Chen X S, Zhao J J 2007 Phys. Rev. B 76 045219
[34] Zhang S B, Northrup J E 1991 Phys. Rev. B 67 2339
[35] Pöykkö S, Chadi D J 1999 Phys. Rev. Lett. 83 1231
[36] Makov G, Payne M C 1995 Phys. Rev. B 51 4014
[37] Tanaka T, Matsunaga K, Ikuhara Y, Yamamoto T 2003 Phys. Rev. B 68 205213
[38] Blochl P E, Jepsen Q, Andersen O K 1994 Phys. Rev. B 49 16223
[39] Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397
[40] Wei S H, Zunger A 1991 Phys. Rev. B 43 1662
计量
- 文章访问数: 6500
- PDF下载量: 528
- 被引次数: 0