Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study

Zhang Mei-Ling Chen Yu-Hong Zhang Cai-Rong Li Gong-Ping

Citation:

Effect of intrinsic defects and copper impurities co-existing on electromagnetic optical properties of ZnO: First principles study

Zhang Mei-Ling, Chen Yu-Hong, Zhang Cai-Rong, Li Gong-Ping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • For ZnO which is not magnetic itself, it is of great significance to study the source of ferromagnetism and its photoelectric properties when Cu doped ZnO coexists with internal defects. The effects of intrinsic defects on the electronic structures, magnetic and optical properties of Cu-doped ZnO (CuZn) are studied by using first principle calculations based on the density functional theory combined with the Hubbard U (DFT + Ud + Up). The results indicate that the doped Cu is a substitute acceptor, and the manufacturing environment plays an important role in forming the CuZn with internal defects. Under the oxygen-rich condition, the doped Cu is favorable for forming internal defects, and the CuZn—Oi bonds are easily formed. On the contrary, the Cu-doped ZnO is not conducive to forming internal defects under the O-poor condition. The 3d electrons of the substitute Cu form the unoccupied accepter energy level at the top of valence band, generating p-type conduction. Comparing with CuZn system, the carrier concentration of positive hole decreases in CuZn-VO system and the conductivity is poor. In the CuZn-VZn system, the number of carrier holes is almost constant, and the conductivity has no effect. In the CuZn-Oi model, the carrier concentration of positive holes increases and the conductivity gets better. The pure ZnO system exhibits non-magnetic behavior. The study also reveals that the smaller the electro-negativity, the greater the contribution to magnetic moment is when O atom is connected with Cu atom. The magnetic moments in CuZn and CuZn-Oi system are mainly generated by the coupling between the Cu 3d and the O 2p orbital on the c axis. When VO and VZn exist in CuZn, the magnetic moment is mainly caused by the strong coupling of Cu 3d with O 2p in ab plane. In the presence of VZn in CuZn, the magnetism also contains the contribution of the spin polarization of O(5, 6) atoms around VZn. In the defect states of CuZn-VZn and CuZn-Oi, the induced states in the deep energy levels are generated by the interaction between the O-O 2s orbital electrons. The reduced optical band gap of the CuZn model results in the red shift of absorption spectrum. The enhanced absorption and reflection of the CuZn-VZn model reduce the transmission.
      Corresponding author: Zhang Mei-Ling, Zhangml_2000@126.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 51562022, 11575074) and the HongLiu First-class Disciplines Development Program of Lanzhou University and Technology, China.
    [1]

    Wang Z L 2008 ACS Nano 2 1987Google Scholar

    [2]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517Google Scholar

    [3]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514Google Scholar

    [4]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104Google Scholar

    [5]

    Suja M, Bashar S B, Morshed M M, Liu J 2015 ACS Appl. Mater. Interfaces 7 8894Google Scholar

    [6]

    Chakraborty M, Ghosh A, Thangavel R 2015 J. Sol-Gel Sci. Technol. 74 756Google Scholar

    [7]

    Horzum S, Torun E, Serin T, Peeters F M 2016 Philos. Mag. 96 1743Google Scholar

    [8]

    Vachhani P S, Bhatnagar A K 2013 Phys. Scr. 8715 045702

    [9]

    Xia C H, Wang F, Hu C L 2014 J. Alloys Compd. 589 604Google Scholar

    [10]

    侯清玉, 许镇潮, 乌云, 赵二俊 2015 64 167201Google Scholar

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201Google Scholar

    [11]

    Iqbal J, Jan T, Shafiq M, Arshad A, Ahmad N, Badshah S, Yu R H 2014 Ceram. Int. 40 2091Google Scholar

    [12]

    Li T J, Li G P, Gao X X, Chen J S 2010 Chin. Phys. Lett. 27 211

    [13]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403Google Scholar

    [14]

    Keavney D J, Buchholz D B, Ma Q, Chang R P 2007 Appl. Phys. Lett. 91 012501Google Scholar

    [15]

    Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008 Appl. Phys. Lett. 92 082508Google Scholar

    [16]

    Zhu M Y, Zhang Z H, Zhong M, Tariq M, Li Y, Li W X, Jin H M, Skotnicova K, Li Y B 2017 Ceram. Int. 43 3166Google Scholar

    [17]

    Luo J H, Liu Q, Yang L N, Sun Z Z, Li Z S 2014 Comput. Mater. Sci. 82 70Google Scholar

    [18]

    Wang Q B, Zhou C, Wu J, Lü T 2013 Opt. Commun. 297 79Google Scholar

    [19]

    Chen Y F, Song Q G, Yan H Y 2012 Comput. Theor. Chem. 983 65Google Scholar

    [20]

    Lee M H, Peng Y C, Wu H C 2014 J. Alloys Compd. 616 122Google Scholar

    [21]

    Wu H C, Peng Y C, Chen C C 2013 Opt. Mater. 35 509Google Scholar

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [25]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943Google Scholar

    [26]

    Monkhost H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892Google Scholar

    [28]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [29]

    Guo T T, Dong G B, Chen Q, Diao X G, Gao F Y 2014 J. Phys. Chem. Solids 75 42Google Scholar

    [30]

    Sun H G, Fan W L, Li Y L, Cheng X F, Li P, Hao J C, Zhao X 2011 Phys. Chem. Chem. Phys. 13 1379Google Scholar

    [31]

    Chen Y, Xu X L, Zhang G H, Xue H, Ma S Y 2009 Physica B 404 3645Google Scholar

    [32]

    段壮芬, 王新强, 何阿玲, 程志梅 2011 原子与分子 28 343Google Scholar

    Duan Z F, Wang X Q, He A L, Cheng Z M 2011 J. At. Mol. Phys. 28 343Google Scholar

    [33]

    Ferhat M, Zaoui A, Ahuja R 2009 Appl. Phys. Lett. 94 142502Google Scholar

    [34]

    Yan Y F, Aljassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912Google Scholar

    [35]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342Google Scholar

    [36]

    Lee H Y, Clark S J, Robertson J 2012 Phys. Rev. B 86 075209Google Scholar

    [37]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [38]

    Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L, Ye H 2010 Chin. Phys. B 19 056104Google Scholar

    [39]

    徐庆岩, 吴雪梅, 诸葛兰剑, 陈学梅, 吴兆丰 2008 微细加工技术 12 16

    Xu Q Y, Wu X M, Zhuge L J, Chen X M, Wu Z F 2008 MicroFabric. Tech. 12 16

  • 图 1  2 × 2 × 2的ZnO的超胞 (红色代替O原子, 蓝紫色代替的是Zn原子)

    Figure 1.  2 × 2 × 2 ZnO supercell (where the red components represent the O atoms, gray represents the Zn atoms)

    图 2  (a) ZnO能带结构图; (b) ZnO分波态密度图

    Figure 2.  (a) Band Structures of ZnO; (b) PDOS of ZnO

    图 3  优化后的晶体结构图 (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    Figure 3.  Structure of crystal cell after optimized: (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    图 5  分波态密度(图中虚线为费米能级) (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    Figure 5.  PDOS (the dotted line in the graph is the Fermi energy level ): (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    图 4  能带结构图(图中虚线为费米能级) (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    Figure 4.  Band structures (the dotted line in the graph is the Fermi energy level): (a) CuZn; (b) CuZn-VO; (c) CuZn-VZn; (d) CuZn-Oi

    图 6  ZnO, CuZn及含不同内在缺陷时(CuZn-VO, CuZn-VZn, CuZn-Oi)介电函数的虚部

    Figure 6.  The imaginary part of the dielectric function of ZnO, CuZn, CuZn-VO, CuZn-VZn, CuZn-Oi

    图 7  有内在缺陷CuZn的吸收光谱

    Figure 7.  Absorption of CuZn with varying intrinsic defects

    图 8  有内在缺陷CuZn的反射光谱

    Figure 8.  Reflectivity of CuZn with varying intrinsic defects

    表 1  ZnO和CuZn缺陷的形成能(单位: eV)

    Table 1.  Formation energy of ZnO and CuZn with intrinsic defects (in eV)

    缺陷类型 VO VZn Oi Cui CuZn CuZn-VO CuZn-VZn CuZn-Oi
    O-rich 6.603 0.915 –0.548 5.795 –0.495 6.337 0.422 –0.965
    O-poor 1.308 6.210 4.747 4.026 3.031 4.569 9.244 7.856
    DownLoad: CSV

    表 2  ZnO模型的带隙和空穴浓度P

    Table 2.  Band gap and hole concertration P of ZnO model

    ZnO CuZn CuZn-VO CuZn-VZn CuZn-Oi
    禁带宽度/eV 3.370 2.577 2.413 2.597 1.885
    光学带隙/eV 3.370 0.980 0.228 1.108 0.195
    P 0.068 1.344 1.107 1.321 1.574
    DownLoad: CSV
    Baidu
  • [1]

    Wang Z L 2008 ACS Nano 2 1987Google Scholar

    [2]

    Ahn K S, Deutsch T, Yan Y, Jiang C S, Perkins C L, Turner J, Jassim M A 2007 J. Appl. Phys. 102 023517Google Scholar

    [3]

    Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, Driscoll J L M 2005 Appl. Phys. Lett. 86 072514Google Scholar

    [4]

    Drmosh Q A, Rao S G, Yamani Z H, Gondal M A 2013 Appl. Surf. Sci. 270 104Google Scholar

    [5]

    Suja M, Bashar S B, Morshed M M, Liu J 2015 ACS Appl. Mater. Interfaces 7 8894Google Scholar

    [6]

    Chakraborty M, Ghosh A, Thangavel R 2015 J. Sol-Gel Sci. Technol. 74 756Google Scholar

    [7]

    Horzum S, Torun E, Serin T, Peeters F M 2016 Philos. Mag. 96 1743Google Scholar

    [8]

    Vachhani P S, Bhatnagar A K 2013 Phys. Scr. 8715 045702

    [9]

    Xia C H, Wang F, Hu C L 2014 J. Alloys Compd. 589 604Google Scholar

    [10]

    侯清玉, 许镇潮, 乌云, 赵二俊 2015 64 167201Google Scholar

    Hou Q Y, Xu Z C, Wu Y, Zhao E J 2015 Acta Phys. Sin. 64 167201Google Scholar

    [11]

    Iqbal J, Jan T, Shafiq M, Arshad A, Ahmad N, Badshah S, Yu R H 2014 Ceram. Int. 40 2091Google Scholar

    [12]

    Li T J, Li G P, Gao X X, Chen J S 2010 Chin. Phys. Lett. 27 211

    [13]

    Nia B A, Shahrokhi M, Moradian R, Manouchehri I 2014 Eur. Phys. J. Appl. Phys. 67 20403Google Scholar

    [14]

    Keavney D J, Buchholz D B, Ma Q, Chang R P 2007 Appl. Phys. Lett. 91 012501Google Scholar

    [15]

    Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M 2008 Appl. Phys. Lett. 92 082508Google Scholar

    [16]

    Zhu M Y, Zhang Z H, Zhong M, Tariq M, Li Y, Li W X, Jin H M, Skotnicova K, Li Y B 2017 Ceram. Int. 43 3166Google Scholar

    [17]

    Luo J H, Liu Q, Yang L N, Sun Z Z, Li Z S 2014 Comput. Mater. Sci. 82 70Google Scholar

    [18]

    Wang Q B, Zhou C, Wu J, Lü T 2013 Opt. Commun. 297 79Google Scholar

    [19]

    Chen Y F, Song Q G, Yan H Y 2012 Comput. Theor. Chem. 983 65Google Scholar

    [20]

    Lee M H, Peng Y C, Wu H C 2014 J. Alloys Compd. 616 122Google Scholar

    [21]

    Wu H C, Peng Y C, Chen C C 2013 Opt. Mater. 35 509Google Scholar

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [24]

    Ma X G, Lu B, Li D, Shi R, Pan C S, Zhu Y F 2011 J. Phys. Chem. C 115 4680

    [25]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B: Condens. Matter 44 943Google Scholar

    [26]

    Monkhost H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [27]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892Google Scholar

    [28]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [29]

    Guo T T, Dong G B, Chen Q, Diao X G, Gao F Y 2014 J. Phys. Chem. Solids 75 42Google Scholar

    [30]

    Sun H G, Fan W L, Li Y L, Cheng X F, Li P, Hao J C, Zhao X 2011 Phys. Chem. Chem. Phys. 13 1379Google Scholar

    [31]

    Chen Y, Xu X L, Zhang G H, Xue H, Ma S Y 2009 Physica B 404 3645Google Scholar

    [32]

    段壮芬, 王新强, 何阿玲, 程志梅 2011 原子与分子 28 343Google Scholar

    Duan Z F, Wang X Q, He A L, Cheng Z M 2011 J. At. Mol. Phys. 28 343Google Scholar

    [33]

    Ferhat M, Zaoui A, Ahuja R 2009 Appl. Phys. Lett. 94 142502Google Scholar

    [34]

    Yan Y F, Aljassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912Google Scholar

    [35]

    Narendra G L, Sreedhar B, Rao J L, Lakshman S V J 1991 J. Mater. Sci. 26 5342Google Scholar

    [36]

    Lee H Y, Clark S J, Robertson J 2012 Phys. Rev. B 86 075209Google Scholar

    [37]

    林俏露, 李公平, 许楠楠, 刘欢, 王苍龙 2017 66 037101Google Scholar

    Lin Q L, Li G P, Xu N N, Liu H, Wang C L 2017 Acta Phys. Sin. 66 037101Google Scholar

    [38]

    Zhao L, Lu P F, Yu Z Y, Liu Y M, Wang D L, Ye H 2010 Chin. Phys. B 19 056104Google Scholar

    [39]

    徐庆岩, 吴雪梅, 诸葛兰剑, 陈学梅, 吴兆丰 2008 微细加工技术 12 16

    Xu Q Y, Wu X M, Zhuge L J, Chen X M, Wu Z F 2008 MicroFabric. Tech. 12 16

Metrics
  • Abstract views:  11912
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2018
  • Accepted Date:  20 February 2019
  • Available Online:  01 April 2019
  • Published Online:  20 April 2019

/

返回文章
返回
Baidu
map