Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Raman spectroscopy based on plasmon waveguide prepared with mesoporous TiO2 thin film

Wan Xiu-Mei Chen Chen Fan Zhi-Bo Lu Dan-Feng Gao Ran Qi Zhi-Mei

Citation:

Raman spectroscopy based on plasmon waveguide prepared with mesoporous TiO2 thin film

Wan Xiu-Mei, Chen Chen, Fan Zhi-Bo, Lu Dan-Feng, Gao Ran, Qi Zhi-Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Gold film (40-nm-thick) sputtered on the glass substrate was decorated by using the sol-gel copolymer templated mesoporous TiO2 thin film (275-nm-thick) to fabricate the plasmon waveguide (PW). The Raman spectroscopy based on the Au/TiO2 PW is studied theoretically and experimentally. The surface morphology of the mesoprous TiO2 thin film and the cross-section of the PW chip are obtained by scanning electron microscopy (SEM) and the porosity (P) of mesoporous TiO2 thin film is determined to be about 0.589 by fitting the calculated waveguide coupling dips to the measured resonance wavelengths based on Fresnel equations. The angular distributions of Raman power from the molecular dipole located in the core layer of the waveguide are theoretically investigated based on the optical reciprocity theorem. The calculated results suggest that the Raman light radiated into the substrate consists of the directional Raman signal propagating at the resonant angle and the non-directional Raman signal whose radiation angles are smaller than the critical angle of total reflection. The directional Raman signal could be detected with the aid of the prism coupler, while the non-directional Raman signal can be detected directly on the back of the sensor chip. Furthermore, the angular distribution of the backscattered Raman signal is divergent and it is unaffected by the use of the prism coupler. The highest power of the directional Raman signal is much larger than that of the non-directional Raman signal and the backscattered Raman signal. The Raman spectroscopy based on the PW is studied by experiment with CV molecules adsorbed into the mesoporous TiO2 thin film. The Raman spectrum is obtained with the 532 nm laser radiating directly onto the waveguide surface. The experimental results show that the Raman signal including the directional Raman signal, non-directional Raman signal and the backscattered Raman signal can be detected with the PW chip. Besides, the directional Raman signal can only be detected by using the prism coupler, while the non-directional Raman signal can be detected directly on the back of the chip. Then the results also show that the peak intensity of the directional Raman signal is twice higher than that of the non-directional Raman signal. The further measurements reveal that the backscattered Raman signal hardly changes under the condition with or without the prism coupler. The experimental results mentioned above are in accordance with the theoretical calculations. The Raman spectroscopy based on PW in this work has potential value in further developing the Raman sensing technique.
      Corresponding author: Qi Zhi-Mei, zhimei-qi@mail.ie.ac.cn
    • Funds: Project supported by the National Key Basic Research Program of China (Grant No. 2015CB352100), the National Natural Science Foundation of China (Grant No. 61401432), the Research Equipment Development Project of Chinese Academy of Sciences (Grant No. YZ201508), and the State Key Laboratory of NBC Protection for Civilian, China (Grant No. SKLNBC2014-11).
    [1]

    Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y 1997 Anal. Chem. 69 1492

    [2]

    Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D 2003 Anal. Chem. 75 5936

    [3]

    Ni J, Lipert R J, Dawson G B, Porter M D 1999 Anal. Chem. 71 4903

    [4]

    Zhang J, Li H T, Liao F, Guo J H, Hu F R 2015 Chin. Phys. Lett. 32 126801

    [5]

    Cai Q, Lu S K, Liao F, Li Y Q, Ma S Z, Shao M W 2014 Nanoscale 6 8117

    [6]

    Liu D L, Zhao Q, Lu D F, Qi Z M 2014 Chem. J. Chin. Univ. 35 2207 (in Chinese) [刘德龙, 赵乔, 逯丹凤, 祁志美 2014 高等学校化学学报 35 2207]

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    He L L, Rodda T, Haynes C L, Deschaines T, Strother T, Diez-Gonzalez F, Labuza T P 2011 Anal. Chem. 83 1510

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]

    [11]

    Jung H, Park M, Kang M, Jeong K H 2016 Light Sci. Appl. 5 doi:10.1038/lsa.2016.9

    [12]

    Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 doi:10.1038/lsa.2014.80

    [13]

    Zhao Q, Lu D F, Liu D L, Chen C, Hu D B, Qi Z M 2014 Acta Phys. -Chim. Sin. 30 1201 (in Chinese) [赵 乔, 逯丹凤, 刘德龙, 陈 晨, 胡德波, 祁志美 2014 物理化学学报 30 1201]

    [14]

    Tian Z Q, Ren B, Mao B W 1997 J. Phys. Chem. 101 1338

    [15]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [16]

    Ru E C L, Etchegoin P G 2006 Chem. Phys. Lett. 423 63

    [17]

    Ding S Y, Wu D Y, Yang Z L, Ren B, Xu X, Tian Z Q 2008 Chem. J. Chin. Univ. 29 2569 (in Chinese) [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 2008 高等学校化学学报 29 2569]

    [18]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese) [汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801]

    [19]

    Kanger J S, Otto C 2003 Appl. Spectrosc. 57 1487

    [20]

    McKee K J, Meyer M W, Smith E A 2012 Anal. Chem. 84 9049

    [21]

    Meyer M W, McKee K J, Nguyen V H T, Smith E A 2012 J. Phys. Chem. C 116 24987

    [22]

    Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q 2014 Sens. Actuators B: Chem. 201 173

    [23]

    Chen C, Li J Y, Wang L, Lu D F, Qi Z M 2015 Phys. Chem. Chem. Phys. 17 21278

    [24]

    Qi Z M, Honma I, Zhou H S 2006 Anal. Chem. 78 1034

    [25]

    Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F 2002 Chem. Mater. 14 3284

    [26]

    Zhang Z, Lu D F, Qi Z M 2012 J. Phys. Chem. C 116 3342

    [27]

    Huo S X, Liu Q, Cao S H, Cai W P, Meng L Y, Xie K X, Zhai Y Y, Zong C, Yang Z L, Ren B, Li Y Q 2015 J. Phys. Chem. Lett. 6 2015

  • [1]

    Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y 1997 Anal. Chem. 69 1492

    [2]

    Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D 2003 Anal. Chem. 75 5936

    [3]

    Ni J, Lipert R J, Dawson G B, Porter M D 1999 Anal. Chem. 71 4903

    [4]

    Zhang J, Li H T, Liao F, Guo J H, Hu F R 2015 Chin. Phys. Lett. 32 126801

    [5]

    Cai Q, Lu S K, Liao F, Li Y Q, Ma S Z, Shao M W 2014 Nanoscale 6 8117

    [6]

    Liu D L, Zhao Q, Lu D F, Qi Z M 2014 Chem. J. Chin. Univ. 35 2207 (in Chinese) [刘德龙, 赵乔, 逯丹凤, 祁志美 2014 高等学校化学学报 35 2207]

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    He L L, Rodda T, Haynes C L, Deschaines T, Strother T, Diez-Gonzalez F, Labuza T P 2011 Anal. Chem. 83 1510

    [9]

    Wei H, Xu H X 2013 Nanoscale 5 10794

    [10]

    Huang Q, Wang J, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y 2009 Acta Phys. Sin. 58 1980 (in Chinese) [黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖 2009 58 1980]

    [11]

    Jung H, Park M, Kang M, Jeong K H 2016 Light Sci. Appl. 5 doi:10.1038/lsa.2016.9

    [12]

    Huang Y Z, Fang Y R, Zhang Z L, Zhu L, Sun M T 2014 Light Sci. Appl. 3 doi:10.1038/lsa.2014.80

    [13]

    Zhao Q, Lu D F, Liu D L, Chen C, Hu D B, Qi Z M 2014 Acta Phys. -Chim. Sin. 30 1201 (in Chinese) [赵 乔, 逯丹凤, 刘德龙, 陈 晨, 胡德波, 祁志美 2014 物理化学学报 30 1201]

    [14]

    Tian Z Q, Ren B, Mao B W 1997 J. Phys. Chem. 101 1338

    [15]

    Moskovits M 1985 Rev. Mod. Phys. 57 783

    [16]

    Ru E C L, Etchegoin P G 2006 Chem. Phys. Lett. 423 63

    [17]

    Ding S Y, Wu D Y, Yang Z L, Ren B, Xu X, Tian Z Q 2008 Chem. J. Chin. Univ. 29 2569 (in Chinese) [丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 2008 高等学校化学学报 29 2569]

    [18]

    Tang J, Liu A P, Li P G, Shen J Q, Tang W H 2014 Acta Phys. Sin. 63 107801 (in Chinese) [汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华 2014 63 107801]

    [19]

    Kanger J S, Otto C 2003 Appl. Spectrosc. 57 1487

    [20]

    McKee K J, Meyer M W, Smith E A 2012 Anal. Chem. 84 9049

    [21]

    Meyer M W, McKee K J, Nguyen V H T, Smith E A 2012 J. Phys. Chem. C 116 24987

    [22]

    Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q 2014 Sens. Actuators B: Chem. 201 173

    [23]

    Chen C, Li J Y, Wang L, Lu D F, Qi Z M 2015 Phys. Chem. Chem. Phys. 17 21278

    [24]

    Qi Z M, Honma I, Zhou H S 2006 Anal. Chem. 78 1034

    [25]

    Alberius P C A, Frindell K L, Hayward R C, Kramer E J, Stucky G D, Chmelka B F 2002 Chem. Mater. 14 3284

    [26]

    Zhang Z, Lu D F, Qi Z M 2012 J. Phys. Chem. C 116 3342

    [27]

    Huo S X, Liu Q, Cao S H, Cai W P, Meng L Y, Xie K X, Zhai Y Y, Zong C, Yang Z L, Ren B, Li Y Q 2015 J. Phys. Chem. Lett. 6 2015

  • [1] Yang Wen-Bin, Zhang Hua-Lei, Qi Xin-Hua, Che Qing-Feng, Zhou Jiang-Ning, Bai Bing, Chen Shuang, Mu Jin-He. Coherent anti-Stokes Raman scattering spectral calculation and vibrational-rotational temperature measurement of non-equilibrium plasma flow field. Acta Physica Sinica, 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [3] Wang Yuan-Yuan, Wang Xian-Zhi, Song Jia-Jun, Zhang Xu, Wang Zhao-Hua, Wei Zhi-Yi. Amplification mechanism in stimulated Raman backward scattering of ultraintense laser in uniform plasma. Acta Physica Sinica, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [5] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [6] Meng Zeng-Ming, Huang Liang-Hui, Peng Peng, Chen Liang-Chao, Fan Hao, Wang Peng-Jun, Zhang Jing. Raman coupling in atomic Bose-Einstein condensed with phase-locked laser system. Acta Physica Sinica, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [7] Zhang Zhi-Meng, Zhang Bo, Wu Feng-Juan, Hong Wei, Teng Jian, He Shu-Kai, Gu Yu-Qiu. Plasma density effect on backward Raman laser amplification. Acta Physica Sinica, 2015, 64(10): 105201. doi: 10.7498/aps.64.105201
    [8] Yang Tian-Yong, Kong Chun-Yang, Ruan Hai-Bo, Qin Guo-Ping, Li Wan-Jun, Liang Wei-Wei, Meng Xiang-Dan, Zhao Yong-Hong, Fang Liang, Cui Yu-Ting. Study on the p-type conductivities and Raman scattering properties of N+ ion-implanted O-rich ZnO thin films. Acta Physica Sinica, 2013, 62(3): 037703. doi: 10.7498/aps.62.037703
    [9] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [10] Deng Quan, Ma Yong, Yang Xiao-Hong, Ye Li-Juan, Zhang Xue-Zhong, Zhang Qi, Fu Hong-Wei. Photoluminescence and Raman properties of Sb-doped ZnO thin film. Acta Physica Sinica, 2012, 61(24): 247701. doi: 10.7498/aps.61.247701
    [11] Yang Chang-Hu, Ma Zhong-Quan, Xu Fei, Zhao Lei, Li Feng, He Bo. Raman spectral analysis of TiO2 thin films doped with rare-earth yttrium and lanthanum. Acta Physica Sinica, 2010, 59(9): 6549-6555. doi: 10.7498/aps.59.6549
    [12] Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin. Raman investigation of ion-implanted ZnO films. Acta Physica Sinica, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [13] Zhou Wen-Ping, Wan Song-Ming, Yin Shao-Tang, Zhang Qing-Li, You Jing-Lin, Wang Yuan-Yuan. High temperature Raman spectra and micro-structure of KTN crystal and melt. Acta Physica Sinica, 2009, 58(1): 570-574. doi: 10.7498/aps.58.570
    [14] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [15] Fang Zhen-Qian, Hu Ming, Zhang Wei, Zhang Xu-Rui. Micro-Raman spectroscopic investigation of the thermal conductivity of oxidized meso-porous silicon. Acta Physica Sinica, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [16] Cao Chun-Fang, Wu Hui-Zhen, Si Jian-Xiao, Xu Tian-Ning, Chen Jing, Shen Wen-Zhong. Abnormal Raman spectra of PbTe crystalline thin films grown by molecular beam epitaxy. Acta Physica Sinica, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [17] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] Jiang Mei-Fu, Ning Zhao-Yuan. Structural analysis of fluorinated diamond-like carbon films by Raman and Fourier transform infrared absorption spectroscopy. Acta Physica Sinica, 2004, 53(5): 1588-1593. doi: 10.7498/aps.53.1588
    [19] Zhang Li-Hui, Li Gao-Xiang, Peng Jin-Sheng. . Acta Physica Sinica, 2002, 51(3): 541-546. doi: 10.7498/aps.51.541
    [20] Zhang Ji-Cai, Dai Lun, Qin Guo-Gang, Ying Li-Zhen, Zhao Xin-Sheng. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
Metrics
  • Abstract views:  5325
  • PDF Downloads:  187
  • Cited By: 0
Publishing process
  • Received Date:  17 March 2016
  • Accepted Date:  18 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map