Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase locking technology for Raman laser system based on 1560 nm external cavity lasers

Wang Kai-Nan Cheng Bing Zhou Yin Chen Pei-Jun Zhu Dong Weng Kan-Xing Wang He-Lin Peng Shu-Ping Wang Xiao-Long Wu Bin Lin Qiang

Citation:

Phase locking technology for Raman laser system based on 1560 nm external cavity lasers

Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang
PDF
HTML
Get Citation
  • The technology of generating Raman laser is not only an important research content in the field of quantum precision measurement, but also a core technology of quantum inertial sensors such as cold atom gravimeter, gyroscope. For 87Rb atoms, two 780-nm lasers with a frequency difference of 6.834 GHz and a stable phase are needed to generate Raman light. Raman lasers can be generated by optical phase-locked loops of two 780-nm narrow linewidth external cavity tunable semiconductor lasers (ECDL). But the system thus developed is complicated in structure and very poor in environmental adaptability. The other method to generate Raman laser is based on intracavity 1560-nm laser with frequency doubling and electro-optic modulation technology. This system is simple in structure and strong in environmental adaptability, but it will introduce sideband effects and cannot achieve phase lock due to the limit by the linewidth and feedback bandwidth performance of the laser. In view of this, based on two new 1560-nm external cavity lasers and a home-made phase-locked circuit, in this paper the phase lock of the laser is achieved, and a Raman laser with low phase noise is obtained. The phase noise of beat note signal is as low as –95 dBc/Hz at the Fourier frequency in a range from 1 kHz to 10 kHz. A comparison of this system with the phase-locked performance of the 780-nm dual laser and the hybrid dual laser shows that this scheme has a slight advantage. In addition, the effect of the phase-locking performance on the phase noise of the cold atom interferometer through the method of piecewise integration is analyzed in this work. The experimental results given in this work provide a scheme for developing a miniaturized Raman optical system suitable for external fields.
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334, 51905482), and the Program of China Aero Geophysical Survey and Remote Sensing Center for Natural Resources (Grant No. DD20189831)
    [1]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [2]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [3]

    Tino G M, Cacciapuoti L, Capozziello S, Lambiase G, Sorrentino F 2020 Prog. Part. Nucl. Phys. 112 103772Google Scholar

    [4]

    Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J 2015 Science 349 849Google Scholar

    [5]

    Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Muller H 2017 Nat. Phys. 13 938Google Scholar

    [6]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [8]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [9]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [10]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [11]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [12]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [13]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [14]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [15]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [16]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [17]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [18]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [19]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [20]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [21]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [24]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [25]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [26]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [27]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [28]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [29]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [30]

    Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar

    [31]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [32]

    Fang J, Hu J, Chen X, Zhu H, Zhou L, Zhong J, Wang J, Zhan M 2018 Opt. Express 26 1586Google Scholar

    [33]

    Theron F, Bidel Y, Dieu E, Zahzam N, Cadoret M, Bresson A 2017 Opt. Commun. 393 152Google Scholar

    [34]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [35]

    Theron F, Carraz O, Renon G, Zahzam N, Bidel Y, Cadoret M, Bresson A 2015 Appl. Phys. B 118 1Google Scholar

    [36]

    Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2014 Appl. Phys. B 116 997Google Scholar

    [37]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [38]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [39]

    Lienhart F, Boussen S, Carraz O, Zahzam N, Bidel Y, Bresson A 2007 Appl. Phys. B 89 177Google Scholar

    [40]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar

    [41]

    Le Gouet J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Dos Santos F P 2009 Opt. Commun. 282 977Google Scholar

    [42]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [43]

    Yim S H, Lee S B, Kwon T Y, Park S E 2014 Appl. Phys. B 115 491

    [44]

    Yim S H, Lee S B, Kwon T Y, Shim K M, Park S E 2019 Appl. Opt. 58 2481Google Scholar

    [45]

    Ristic S, Bhardwaj A, Rodwell M J, Coldren L A, Johansson L A 2010 J. Lightwave Technol. 28 526Google Scholar

    [46]

    Numata K, Chen J R, Wu S T 2012 Opt. Express 20 14234Google Scholar

    [47]

    Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar P H, Roskos H G 2010 Opt. Express 18 8621Google Scholar

    [48]

    Guionie M, Frein L, Bondu F, Carre A, Loas G, Pinsard E, Cadier B, Alouini M, Romanelli M, Vallet M, Brunel M 2018 Fiber Lasers and Glass Photonics: Materials through Applications Strasbourg, France, April 22−26, 2018 p10683

    [49]

    Rouse C D, Brown A W, Wylie M T V, Colpitts B G 2011 21st International Conference on Optical Fiber Sensors Ottawa, Canada, May 15−19, 2011 p77532L

  • 图 1  拉曼光锁相的原理示意图. ML, 主激光器; SL, 从激光器; PD, 高速光电管; Mix, 混频器; RF, 射频参考

    Figure 1.  Schematic diagram of the optical phase-locked loop (OPLL) system. ML, master laser; SL, slave laser; PD, high-speed photodiode; Mix, mixer; RF, RF reference.

    图 2  拉曼光锁相的频域原理图

    Figure 2.  Diagram in frequency domain for the system of OPLL.

    图 3  实验系统示意图. 1560 nm FL1, 光纤激光器; 1560 nm FL2, 外腔式光纤输出型激光器; 780 nm DL1和780 nm DL2, 外腔式激光器; ISO, 隔离器; EDFA, 掺铒光纤放大器; PPLN, 周期性铌酸锂晶体; FM, 频率调制光谱; PD, 高速光电管; Amp, 低噪声放大器; Beat signal, 拍频信号; ${\Phi }\; \mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}$, 相位锁定方法; SA, 频谱分析仪; PFD, 频率相位检测模块; PID, 比例积分微分控制模块; DDS, 直接数字合成器; Frequency Ref, 频率参考; /2, 二分频; Current, 电流调制口; PZT, 压电陶瓷调制口; PDRO, 锁相介质振荡器

    Figure 3.  Schematic diagram of the experimental system. 1560 nm FL1, fiber laser; 1560 nm FL2, fibered laser; 780 nm DL1 and 780 nm DL2, external cavity diode laser; ISO, isolator; EDFA, erbium-doped fiber amplifier; PPLN, periodic lithium niobate crystal; FM, frequency modulation spectroscopy; PD, high-speed photodiode; Amp, low noise amplifier; Beat signal, Beatnote signal; $ \varPhi \;\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}, $ phase locking method; SA, spectrum analyzer; PFD, frequency phase detector module; PID, the module of proportional integral derivative controller; DDS, direct digital synthesizer; Frequency Ref, frequency reference; /2, two-way frequency; Current, current modulation port; PZT, piezoelectric ceramic modulation port; PDRO, phase locked dielectric resonator oscillator.

    图 4  锁相后的拍频信号谱线

    Figure 4.  Spectra of the closed-loop beat note.

    图 5  光锁相环各部分的相位噪声功率谱

    Figure 5.  Phase noise spectral density for several parts of the OPLL system.

    图 6  三种激光器组合锁相后的相位噪声功率谱

    Figure 6.  Phase noise spectral density for three kinds of combinations of the lasers.

    图 7  相噪分段积分的结果

    Figure 7.  Results of subsection integral based on the phase noise spectra.

    图 8  相噪对重力测量性能的影响

    Figure 8.  Influence of the phase noise on the gravity measurement performance.

    Baidu
  • [1]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [2]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [3]

    Tino G M, Cacciapuoti L, Capozziello S, Lambiase G, Sorrentino F 2020 Prog. Part. Nucl. Phys. 112 103772Google Scholar

    [4]

    Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J 2015 Science 349 849Google Scholar

    [5]

    Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Muller H 2017 Nat. Phys. 13 938Google Scholar

    [6]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [8]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [9]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [10]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [11]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [12]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [13]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [14]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [15]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [16]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [17]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [18]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [19]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [20]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [21]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [24]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [25]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [26]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [27]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [28]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [29]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [30]

    Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar

    [31]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [32]

    Fang J, Hu J, Chen X, Zhu H, Zhou L, Zhong J, Wang J, Zhan M 2018 Opt. Express 26 1586Google Scholar

    [33]

    Theron F, Bidel Y, Dieu E, Zahzam N, Cadoret M, Bresson A 2017 Opt. Commun. 393 152Google Scholar

    [34]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [35]

    Theron F, Carraz O, Renon G, Zahzam N, Bidel Y, Cadoret M, Bresson A 2015 Appl. Phys. B 118 1Google Scholar

    [36]

    Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2014 Appl. Phys. B 116 997Google Scholar

    [37]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [38]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [39]

    Lienhart F, Boussen S, Carraz O, Zahzam N, Bidel Y, Bresson A 2007 Appl. Phys. B 89 177Google Scholar

    [40]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar

    [41]

    Le Gouet J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Dos Santos F P 2009 Opt. Commun. 282 977Google Scholar

    [42]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [43]

    Yim S H, Lee S B, Kwon T Y, Park S E 2014 Appl. Phys. B 115 491

    [44]

    Yim S H, Lee S B, Kwon T Y, Shim K M, Park S E 2019 Appl. Opt. 58 2481Google Scholar

    [45]

    Ristic S, Bhardwaj A, Rodwell M J, Coldren L A, Johansson L A 2010 J. Lightwave Technol. 28 526Google Scholar

    [46]

    Numata K, Chen J R, Wu S T 2012 Opt. Express 20 14234Google Scholar

    [47]

    Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar P H, Roskos H G 2010 Opt. Express 18 8621Google Scholar

    [48]

    Guionie M, Frein L, Bondu F, Carre A, Loas G, Pinsard E, Cadier B, Alouini M, Romanelli M, Vallet M, Brunel M 2018 Fiber Lasers and Glass Photonics: Materials through Applications Strasbourg, France, April 22−26, 2018 p10683

    [49]

    Rouse C D, Brown A W, Wylie M T V, Colpitts B G 2011 21st International Conference on Optical Fiber Sensors Ottawa, Canada, May 15−19, 2011 p77532L

  • [1] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. Ultra-high vacuum measurement based on 7Li cold atoms manipulation. Acta Physica Sinica, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [3] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [4] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [6] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [7] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [8] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [9] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [10] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] Wang Jin, Zhan Ming-Sheng. Test of weak equivalence principle of microscopic particles based on atom interferometers. Acta Physica Sinica, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [12] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [13] Wang Zhi-Hui, Tian Ya-Li, Li Gang, Zhang Tian-Cai. Generation and application of two-photon Raman laser for manipulation of internal state of Cs atom. Acta Physica Sinica, 2015, 64(18): 184209. doi: 10.7498/aps.64.184209
    [14] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [15] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] Zhu Chang-Xing, Feng Yan-Ying, Ye Xiong-Ying, Zhou Zhao-Ying, Zhou Yong-Jia, Xue Hong-Bo. The absolute rotation measurement of atom interferometer by phase modulation. Acta Physica Sinica, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [17] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  5830
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2021
  • Accepted Date:  21 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回
Baidu
map