-
Backward Raman amplification (BRA) in plasma can be used for generating ultra-powerful laser pulses. In this paper, the plasma density effect on backward Raman laser amplification is studied by using particle-in-cell method. It is found that using a low plasma density can lead to the premature Langmuir wave breaking and thus result in a small energy-transfer efficiency. On the other hand, using a high plasma density will enhance the developments of unwanted instabilities, which rapidly disturb the Raman amplification, thus limiting the interaction length and output power. Therefore, an optimal plasma density for BRA is near the threshold of Langmuir wave breaking in order to achieve both high efficiency and large energy flux. The space frequency spectrum analysis shows that the saturated intensity of amplified pulses is limited mainly by the self-phase modulation instability. By using a 1013 W·cm-2 pump pulse, our simulation results show that the initial 1013 W·cm-2 seed pulse can be well be well amplified into a pulse with an energy power of 1017 W·cm-2, a duration of 40 fs, and and an energy conversion efficiency of up to 58%.
-
Keywords:
- ultra-intense laser /
- laser amplification /
- backward Raman scattering /
- particle-in-cell simulation
[1] Zhang J T, He B, He X T, Chang T Q, Xu L B, Andereev N E 2001 Acta Phys. Sin. 50 921 (in Chinese) [张家泰, 何斌, 贺贤土, 常铁强, 许林宝, 安德列夫 N E 2001 50 921]
[2] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasma 1 1626
[3] Hinkel D E 2013 Nucl. Fusion 53 104027
[4] Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229
[5] Zhou C T, Wang X G, Wu S Z, Cai H B, Wang F, He X T 2010 Appl. Phys. Lett. 97 201502
[6] Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103
[7] Lichters R, Meyer-ter-Vehn J, Pukhov A 1996 Phys. Plasmas 3 3425
[8] Esirkepov T Zh, Bulanov S V, Kando M, Pirozhkov A S, Zhidkov A G 2009 Phys. Rev. Lett. 103 025002
[9] Ji L L, Shen B F, Li D X, Wang D, Leng Y X, Zhang X M, Wen M, Wang W P, Xu J C, Yu Y H 2010 Phys. Rev. Lett. 105 025001
[10] Strickland D, Mourou G 1985 Opt. Commun. 56 219
[11] Shvets G, Fisch N J, Pukhov A, Meyer-ter-Vehn J 1998 Phys. Rev. Lett. 81 4879
[12] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
[13] Mourou G A, Fisch N J, Malkin V M, Toroker Z, Khazanov E A, Sergeev A M, Tajima T, Garrec B L 2012 Opt. Commun. 285 720
[14] Tang Y H, Han S S, Zhang C X, Wu Y Q, Cheng J, Zhong F C Zhu Y Z, Xu Z Z 2002 Chin. Phys. 11 50
[15] Zhou C L, Ye W H, Lu X P 2014 Acta Phys. Sin. 63 085207 (in Chinese) [邹长林, 叶文华, 卢新培 2014 63 085207]
[16] Ping Y, Geltner I, Fisch N J, Shvets G, Suckewer S 2000 Phys. Rev. E 62 4532
[17] Ping Y, Cheng W, Suckewer S, Clark D S, Fisch N J 2004 Phys. Rev. Lett. 92 175007
[18] Dreher M, Takahashi E, Meyer-ter-Vehn J, Witter K J 2004 Phys. Rev. Lett. 93 095001
[19] Cheng W, Avitzour Y, Ping Y, Suckewer S, Fisch N J, Hur M S, Wurtele J S 2005 Phys. Rev. Lett. 94 045003
[20] Ren J, Cheng W F, Li S L, Suckewer S 2007 Nat. Phys. 3 732
[21] Clark D S, Fisch N J 2003 Phys. Plasmas 10 4848
[22] Yampolsky N A, Fisch N J 2009 Phys. Plasmas 16 072105
[23] Zhang Z M, He X T, Sheng Z M, Yu M Y 2011 Phys. Plasmas 18 023110
[24] Fraiman G M, Yampolsky N A, Malkin V M, Fisch N J 2002 Phys. Plasmas 9 3617
[25] Wang T L, Clark D S, Strozzi D J, Wilks S C, Martins S F, Kirkwood R K 2010 Phys. Plasmas 17 023109
[26] Malkin V M, Toroker Z, Fisch N J 2012 Phys. Plasmas 19 023109
-
[1] Zhang J T, He B, He X T, Chang T Q, Xu L B, Andereev N E 2001 Acta Phys. Sin. 50 921 (in Chinese) [张家泰, 何斌, 贺贤土, 常铁强, 许林宝, 安德列夫 N E 2001 50 921]
[2] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasma 1 1626
[3] Hinkel D E 2013 Nucl. Fusion 53 104027
[4] Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229
[5] Zhou C T, Wang X G, Wu S Z, Cai H B, Wang F, He X T 2010 Appl. Phys. Lett. 97 201502
[6] Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103
[7] Lichters R, Meyer-ter-Vehn J, Pukhov A 1996 Phys. Plasmas 3 3425
[8] Esirkepov T Zh, Bulanov S V, Kando M, Pirozhkov A S, Zhidkov A G 2009 Phys. Rev. Lett. 103 025002
[9] Ji L L, Shen B F, Li D X, Wang D, Leng Y X, Zhang X M, Wen M, Wang W P, Xu J C, Yu Y H 2010 Phys. Rev. Lett. 105 025001
[10] Strickland D, Mourou G 1985 Opt. Commun. 56 219
[11] Shvets G, Fisch N J, Pukhov A, Meyer-ter-Vehn J 1998 Phys. Rev. Lett. 81 4879
[12] Malkin V M, Shvets G, Fisch N J 1999 Phys. Rev. Lett. 82 4448
[13] Mourou G A, Fisch N J, Malkin V M, Toroker Z, Khazanov E A, Sergeev A M, Tajima T, Garrec B L 2012 Opt. Commun. 285 720
[14] Tang Y H, Han S S, Zhang C X, Wu Y Q, Cheng J, Zhong F C Zhu Y Z, Xu Z Z 2002 Chin. Phys. 11 50
[15] Zhou C L, Ye W H, Lu X P 2014 Acta Phys. Sin. 63 085207 (in Chinese) [邹长林, 叶文华, 卢新培 2014 63 085207]
[16] Ping Y, Geltner I, Fisch N J, Shvets G, Suckewer S 2000 Phys. Rev. E 62 4532
[17] Ping Y, Cheng W, Suckewer S, Clark D S, Fisch N J 2004 Phys. Rev. Lett. 92 175007
[18] Dreher M, Takahashi E, Meyer-ter-Vehn J, Witter K J 2004 Phys. Rev. Lett. 93 095001
[19] Cheng W, Avitzour Y, Ping Y, Suckewer S, Fisch N J, Hur M S, Wurtele J S 2005 Phys. Rev. Lett. 94 045003
[20] Ren J, Cheng W F, Li S L, Suckewer S 2007 Nat. Phys. 3 732
[21] Clark D S, Fisch N J 2003 Phys. Plasmas 10 4848
[22] Yampolsky N A, Fisch N J 2009 Phys. Plasmas 16 072105
[23] Zhang Z M, He X T, Sheng Z M, Yu M Y 2011 Phys. Plasmas 18 023110
[24] Fraiman G M, Yampolsky N A, Malkin V M, Fisch N J 2002 Phys. Plasmas 9 3617
[25] Wang T L, Clark D S, Strozzi D J, Wilks S C, Martins S F, Kirkwood R K 2010 Phys. Plasmas 17 023109
[26] Malkin V M, Toroker Z, Fisch N J 2012 Phys. Plasmas 19 023109
Catalog
Metrics
- Abstract views: 6167
- PDF Downloads: 200
- Cited By: 0