Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Robust Capon beamforming with weighted sparse constraint

Liu Zhen Sun Chao Liu Xiong-Hou Guo Qi-Li

Citation:

Robust Capon beamforming with weighted sparse constraint

Liu Zhen, Sun Chao, Liu Xiong-Hou, Guo Qi-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Adaptive beamforming is widely used in the fields such as radar, sonar, wireless communication to estimate the parameters of the signal of interest (SOI) at the output of a sensor array by data-adaptive spatial filtering and interference suppression. The standard Capon beamformer (SCB) is a typical adaptive beamforming approach which provides a superior performance by minimizing the array output power while simultaneously maintaining the array response under the assumption of distortionless direction of arrival (DOA). However, the advantages in performance of SCB are obtainable only when the number of snapshots available for the sample covariance matrix estimation is large enough and the direction of the SOI is known accurately. When applied to practical situations where the aforementioned two requirements are not satisfied, SCB will suffer high sidelobe levels and performance degradation in the parameter estimates due to lack of measurements and mismatch in the steering vector.A sparsity-constrained Capon beamformer (SCCB) arises to alleviate these problems. Unlike SCB, the constraint in SCCB is composed of two parts: the original array output power constraint part and the sparse constraint part (?1 norm constraint, encouraging sparse distribution in the array responses). However, if the sparse constraint in SCCB is set too large compared with the array output power constraint part, the responses in the directions of interferences will be influenced, and a tradeoff between the ability to reduce the sidelobe levels and the ability to reject the interferences must be made. Thus, based on the SCCB, a new robust Capon beamformer utilizing a weighted sparse constraint is proposed in this paper. In the proposed method, the sparse constraint part is replaced by a weighted sparse constraint, which is applied only to the sidelobe regions of the beampattern. By doing so, the number of the non-zero elements in the sidelobe response is minimized, resulting in an enhanced mainlobe region and suppressed sidelobe ones.In sparse recovery, the sparse constraint (the l1 norm constraint) does not necessarily enforce democratic penalization, which means that larger coefficients are penalized more heavily than smaller coefficients. Based on such a consideration, a weighting matrix can be constructed to put larger weights in the interferences directions to discourage their responses, and put smaller weights to maintain the responses in the remaining parts of the sidelobe regions. In this paper, the weighting matrix is obtained by utilizing the orthogonality between the signal subspace and the noise subspace. Since the steering vectors corresponding to the interferences and the SOI span the same space as the signal subspace, the inner products between the steering vectors in the interference directions and the noise subspace will produce zeroes ideally. By taking the reciprocals of these inner products, large values will yield in the interference directions while small values are obtained in other directions in the sidelobe regions. Using these values as the weights to the sparse constraint, a beampattern with deeper nulls, lower sidelobes, and better robustness to steering vector mismatch is obtainable as compared with SCB and SCCB. Besides, the output SINR is also effectively improved. Numerical simulations and a water-tank experiment are conducted to demonstrate the effectiveness of the proposed method.
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274252, 51479169), the Opening Project of State Key Laboratory of Acoustics, China (Grant No. SKLA201501), the Fundamental Research Fund for the Central Universities, China (Grant No. 3102015ZY011), and the Northwestern Polytechnical University Foundation for Basic Research, China (Grant No. JC20110208).
    [1]

    Haykin S 1985 Array Signal Processing (New Jersey: Prentice-Hall) pp15-77

    [2]

    Harry L, Van T 2002 Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing (New York: Wiley) pp728-751

    [3]

    Capon J 1969 Proc. IEEE 57 1408

    [4]

    Liu J, Gershman A B, Luo Z Q, Kon M W 2003 IEEE Sign. Process. Lett. 10 331

    [5]

    Cox H 1973 J. Acoust. Soc. Am 54 771

    [6]

    Carlson B D 1988 IEEE Trans. Aerosp. Electron. Syst. 24 397

    [7]

    Besson O, Vincent F 2005 IEEE Trans. Sign. Process. 53 452

    [8]

    Feldman D D, Griffiths L J 1994 IEEE Trans. Sign. Process. 42 867

    [9]

    Chang L, Yeh C C 1992 IEEE Trans. Antenna Propag. 40 1336

    [10]

    Li J, Stoica P, Wang Z 2003 IEEE Trans. Sign. Process. 51 1702

    [11]

    Li J, Stoica P, Wang Z 2004 IEEE Trans. Sign. Process. 52 2407

    [12]

    Vorobyov S A, Gershman A B, Luo Z Q 2003 IEEE Trans. Sign. Process. 51 313

    [13]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese) [黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [14]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [15]

    Wang F, Balakrishnan V, Zhou P Y 2003 IEEE Trans. Sign. Process. 51 1172

    [16]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [17]

    Xiao D, Cai H K, Zheng H Y 2015 Chin. Phys. B 24 060505

    [18]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [19]

    Zhang Y, Ng B P, Wan Q 2008 IEEE Sign. Process. Lett. 44 615

    [20]

    Liu Y P, Wan Q 2010 Prog. Electromagn. Res. Lett. 16 53

    [21]

    Li J, Stoica P 2006 Robust Adaptive Beamforming (New York: Wiley) pp1-94

    [22]

    Rao B D, Engan K, Cotter S F, Palmer J, Delado K K 2003 IEEE Trans. Sign. Process. 51 760

    [23]

    Liu Y P 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘翼鹏 2011 博士学位论文(成都: 电子科技大学)]

    [24]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM Review 43 129

    [25]

    Cands E J, Wakin M B, Boyd S P 2007 J. Fourier Anal. Appl. 14 877

    [26]

    Zheng C, Li G, Zhang H, Wang X 2011 Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Prague, Czech Republic, May 22-27, 2011 p2856

    [27]

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Spatial Spectrum Estimation Theory and Algorithms (Beijing:Tsinghua University Press) pp54-55 (in Chinese) [王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京:清华大学出版社) 第54-55页]

  • [1]

    Haykin S 1985 Array Signal Processing (New Jersey: Prentice-Hall) pp15-77

    [2]

    Harry L, Van T 2002 Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing (New York: Wiley) pp728-751

    [3]

    Capon J 1969 Proc. IEEE 57 1408

    [4]

    Liu J, Gershman A B, Luo Z Q, Kon M W 2003 IEEE Sign. Process. Lett. 10 331

    [5]

    Cox H 1973 J. Acoust. Soc. Am 54 771

    [6]

    Carlson B D 1988 IEEE Trans. Aerosp. Electron. Syst. 24 397

    [7]

    Besson O, Vincent F 2005 IEEE Trans. Sign. Process. 53 452

    [8]

    Feldman D D, Griffiths L J 1994 IEEE Trans. Sign. Process. 42 867

    [9]

    Chang L, Yeh C C 1992 IEEE Trans. Antenna Propag. 40 1336

    [10]

    Li J, Stoica P, Wang Z 2003 IEEE Trans. Sign. Process. 51 1702

    [11]

    Li J, Stoica P, Wang Z 2004 IEEE Trans. Sign. Process. 52 2407

    [12]

    Vorobyov S A, Gershman A B, Luo Z Q 2003 IEEE Trans. Sign. Process. 51 313

    [13]

    Huang C, Sun D J, Zhang D L, Teng T T 2014 Acta Phys. Sin. 63 188401 (in Chinese) [黄聪, 孙大军, 张殿伦, 滕婷婷 2014 63 188401]

    [14]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [15]

    Wang F, Balakrishnan V, Zhou P Y 2003 IEEE Trans. Sign. Process. 51 1172

    [16]

    Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]

    [17]

    Xiao D, Cai H K, Zheng H Y 2015 Chin. Phys. B 24 060505

    [18]

    Sun Y L, Tao J X 2014 Chin. Phys. B 23 078703

    [19]

    Zhang Y, Ng B P, Wan Q 2008 IEEE Sign. Process. Lett. 44 615

    [20]

    Liu Y P, Wan Q 2010 Prog. Electromagn. Res. Lett. 16 53

    [21]

    Li J, Stoica P 2006 Robust Adaptive Beamforming (New York: Wiley) pp1-94

    [22]

    Rao B D, Engan K, Cotter S F, Palmer J, Delado K K 2003 IEEE Trans. Sign. Process. 51 760

    [23]

    Liu Y P 2011 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [刘翼鹏 2011 博士学位论文(成都: 电子科技大学)]

    [24]

    Chen S S, Donoho D L, Saunders M A 2001 SIAM Review 43 129

    [25]

    Cands E J, Wakin M B, Boyd S P 2007 J. Fourier Anal. Appl. 14 877

    [26]

    Zheng C, Li G, Zhang H, Wang X 2011 Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Prague, Czech Republic, May 22-27, 2011 p2856

    [27]

    Wang Y L, Chen H, Peng Y N, Wan Q 2004 Spatial Spectrum Estimation Theory and Algorithms (Beijing:Tsinghua University Press) pp54-55 (in Chinese) [王永良, 陈辉, 彭应宁, 万群 2004 空间谱估计理论与算法 (北京:清华大学出版社) 第54-55页]

  • [1] Jiang Lu-Bing, Li Ning-Xuan, Ji Kai. Formation and suppression of nonthermal statistics in peridically driven quantum Ising models. Acta Physica Sinica, 2020, 69(14): 140501. doi: 10.7498/aps.69.20191657
    [2] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [3] Li Peng, Zhang Xin-Hua, Fu Liu-Fang, Zeng Xiang-Xu. A modal domain beamforming approach for depth estimation by a horizontal array. Acta Physica Sinica, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [4] Xie Lei, Sun Chao, Liu Xiong-Hou, Jiang Guang-Yu. Array gain of conventional beamformer affected by structure of acoustic field in continental slope area. Acta Physica Sinica, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [5] Liu Ya-Qi, Liu Cheng-Cheng, Zhao Yong-Jun, Zhu Jian-Dong. A blind beamforming algorithm for multitarget signals based on time-frequency analysis. Acta Physica Sinica, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [6] Fan Zhan, Liang Guo-Long, Fu Jin, Wang Yan. Robust sub-regional Frost beamforming based on the signal subspace reconstruction. Acta Physica Sinica, 2015, 64(5): 054303. doi: 10.7498/aps.64.054303
    [7] Wang Ping, Cheng Na, Gong Zhi-Hui, Wang Lin-Hong. Ultrasound imaging algorithm based on generalized sidelobe canceller. Acta Physica Sinica, 2015, 64(23): 238701. doi: 10.7498/aps.64.238701
    [8] Guo Ye-Cai, Zhang Ning, Wu Li-Fu, Sun Xin-Yu. Adaptive weighted constrained least squares algorithm based microphone array robustness beamforming algorithm. Acta Physica Sinica, 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [9] Wang Wei-Yuan, Jiang Shi-Qin, Zhou Da-Fang, Zhu Jia-Chen, Yan Yu-Rui, Quan Wei-Wei. Magnetocardiac signal analysis based on multiple time windows beamformer method. Acta Physica Sinica, 2014, 63(24): 248702. doi: 10.7498/aps.63.248702
    [10] Deng Cheng-Zhi, Tian Wei, Chen Pan, Wang Sheng-Qian, Zhu Hua-Sheng, Hu Sai-Feng. Infrared image super-resolution via locality-constrained group sparse model. Acta Physica Sinica, 2014, 63(4): 044202. doi: 10.7498/aps.63.044202
    [11] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [12] Wang Yan, Wu Wen-Feng, Fan Zhan, Liang Guo-Long. A new robust adaptive beamforming and the one-dimensional search strategy. Acta Physica Sinica, 2014, 63(15): 154303. doi: 10.7498/aps.63.154303
    [13] Huang Cong, Sun Da-Jun, Zhang Dian-Lun, Teng Ting-Ting. Optimizations for robust low sidelobe beamforming of bistatic multiple-input multiple-output virtual array. Acta Physica Sinica, 2014, 63(18): 188401. doi: 10.7498/aps.63.188401
    [14] Song Chang-Xin, Ma Ke, Qin Chuan, Xiao Peng. Infrared image segmentation based on clustering combined with sparse coding and spatial constraints. Acta Physica Sinica, 2013, 62(4): 040702. doi: 10.7498/aps.62.040702
    [15] Wang Yan, Wu Wen-Feng, Fan Zhan, Liang Guo-Long. Robust adaptive beamforming based on semi-definite programming and rank-one decomposition. Acta Physica Sinica, 2013, 62(18): 184302. doi: 10.7498/aps.62.184302
    [16] Tu De-Min, Wang Xia, Lü Ze-Peng, Wu Kai, Peng Zong-Ren. Formation and inhibition mechanisms of space charges in direct current polyethylene insulation explained by energy band theory. Acta Physica Sinica, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [17] Yang Wei, Liu Ying, Xiao Li-Feng, Gao Shu-Li. Suppression of sidelobe levels using two cascaded single-stage acousto-optic tunable filters. Acta Physica Sinica, 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [18] Zhou Nai-Gen, Zhou Lang. Prevention of misfit dislocations by using nano pillar crystal array substrates. Acta Physica Sinica, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [19] WANG MAO-QUAN, ZHAO QIN-ZHU. THE RESTRAINT OF THE TEARING MODES IN TOKAMAK. Acta Physica Sinica, 1984, 33(4): 449-456. doi: 10.7498/aps.33.449
    [20] L. JEN, M. Y. LOO. THE SUPPRESSION OF SIDE-LOBES OF LINEAR ARRAYS. Acta Physica Sinica, 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
Metrics
  • Abstract views:  7340
  • PDF Downloads:  322
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2015
  • Accepted Date:  29 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map