搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种广义旁瓣相消的超声成像算法

王平 程娜 龚志辉 王林泓

引用本文:
Citation:

一种广义旁瓣相消的超声成像算法

王平, 程娜, 龚志辉, 王林泓

Ultrasound imaging algorithm based on generalized sidelobe canceller

Wang Ping, Cheng Na, Gong Zhi-Hui, Wang Lin-Hong
PDF
导出引用
  • 针对最小方差和相干系数结合算法在超声成像对比度、分辨率和对噪声的鲁棒性方面存在的不足, 提出一种广义旁瓣相消的成像算法. 首先基于最小方差准则, 构造广义旁瓣相消器, 获得自适应与非自适应两部分加权向量, 然后根据接收信号的协方差矩阵构建特征阈值信号子空间, 并将获得的加权向量投影到此特征信号子空间的左奇异矢量空间中, 获得新的加权矢量. 通过Field II点目标和吸声斑仿真结果表明: 该方法获得的超声图像在对比度、分辨率和对噪声的鲁棒性上均优于传统延时叠加算法及最小方差和相干系数结合算法, 同时将广义旁瓣相消算法获得的加权向量与符号相干系数结合, 还能进一步提高超声图像质量. 最后通过geabr_0实验数据进行测试, 结果表明: 提出算法的分辨率和对比度及对噪声的鲁棒性上均优于传统延时叠加算法及最小方差和相干系数结合算法.
    The traditional delay and sum (DAS) algorithm is the most widely adopted method in medical ultrasound imaging; although it can produce images quickly, it sacrifices the resolution and the contrast ratio. The adaptive method such as the minimum variance (MV) continuously updates the apodization weighting vectors according to the received signals, so that the variance of the weighted signals is minimized, and thus the quality of the ultrasound imaging can be improved, especially its resolution. Although the image quality may be improved in the contrast ratio as well as the resolution after combining the minimum variance with the coherence factor (MV-CF), it complicates the algorithm, and the robustness against noise is enhanced but a little. An improved ultrasound imaging algorithm based on the generalized side lobe canceller (GSC) is proposed, which is constructed according to the minimum variance principle. The canceller is designed to classify the signal into desired and noise signals, combined with wiping off the big interferential eigenvectors, so that the robustness against noise can be enhanced. Firstly, the canceller divides the weighting vector into non-adaptive and adaptive weights, then the eigenstructure subspace is established according to the covariance matrix of the received signals, and the renewed weighting vector is achieved finally by projecting the weighting vector into the left singular space of the eigenstructure subspace. Simulations of the point targets and the cyst phantom through the simulation tool Field II demonstrate that the ultrasound image acquired through the proposed method is better than the traditional DAS and MV-CF algorithms in terms of the contrast ratio and resolution. In practice, the contrast ratio increases by roughly 7 dB compared to DAS and 5 dB to MV-CF. Furthermore, the proposed method gives a more satisfactory lateral resolution as well as the lowest side lobe peak level. From the sound-absorbing speckle simulation, the contrast ratio increases by 3 dB more than that of DAS and over 4 dB than that of MV-CF when noise exists. In addition, MV-CF performs the worst in the robustness aspect while the proposed GSC method makes improvement on the basis of it. Besides, the image quality can be further improved by combining the proposed method with sign coherence factor (GSC-SCF). After such a combination, the noise added to the data sets is almost invisible in point targets simulation. It also possesses the maximum mean power in cyst region in sound-absorbing speckle simulation. Finally, an experiment is conducted on the basis of the complete data sets which are offered by the University of Michigan. Results indicate that the proposed methods can perform better than the conventional DAS and MV-CF in resolution, contrast ratio and the robustness against noise.
      通信作者: 程娜, cqu_dqwp@163.com
    • 基金项目: 国家自然科学基金(批准号: 51377182)和重庆市科委自然科学基金(批准号:cstc2012jjA10129)资助的课题.
      Corresponding author: Cheng Na, cqu_dqwp@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51377182), and the Natural Science Foundation Project of CQ CSTC (Grant No. cstc2012jjA10129).
    [1]

    Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H, Chen W Z 2012 Chin. Phys. B 21 074301

    [2]

    Zheng C C, Peng H, Han Z H 2014 Acta Phys. Sin. 63 148702 (in Chinese) [郑驰超, 彭虎, 韩志会 2014 63 148702]

    [3]

    Kortbek J, Jensen J A, Gammelmark K L 2013 Ultrasonics 53 1

    [4]

    Wu W T, Pu J, L Y 2011 Acta Acustica 36 66 (in Chinese) [吴文焘, 蒲杰, 吕燚 2011 声学学报 36 66]

    [5]

    Widrow B, Duvall K M, Gooch R P, Newman W C 1982 IEEE Trans. Antenn. Propag. 30 469

    [6]

    Sakhaei S M 2013 Ultrasonics 59 119

    [7]

    Wang P, Xu Q, Fan W Z, Gao Y, He W, Chen M Y 2013 Acta Acustica 38 65 (in Chinese) [王平, 许琴, 范文政, 高阳, 何为, 陈民铀 2013 声学学报 38 65]

    [8]

    Li J, Stoica P, Wang Z S 2004 IEEE Trans. Sign. Process. 52 2407

    [9]

    Selen Y, Abrahamsson R, Stoica P 2008 Signal Process. 88 33

    [10]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [11]

    Zheng C C, Peng H, Han Z H 2012 Acta Acustica 37 637 (in Chinese) [郑驰超, 彭虎, 韩志会 2012 声学学报 37 637]

    [12]

    Li P C, Li M L 2003 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 50 128

    [13]

    Park S, Karpiouk A B, Aglyamov S R, Emelianov S Y 2008 Opt. Lett. 33 1291

    [14]

    Asl B M, Mahloojifar A 2009 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 56 1923

    [15]

    Aboulnasr H, Sherif A E, Alex B G, Kon M W 2006 IEEE Trans. Signal Process. 54 1587

    [16]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 958

    [17]

    Jensen J A, Svendsen N B 1992 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 39 262

  • [1]

    Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H, Chen W Z 2012 Chin. Phys. B 21 074301

    [2]

    Zheng C C, Peng H, Han Z H 2014 Acta Phys. Sin. 63 148702 (in Chinese) [郑驰超, 彭虎, 韩志会 2014 63 148702]

    [3]

    Kortbek J, Jensen J A, Gammelmark K L 2013 Ultrasonics 53 1

    [4]

    Wu W T, Pu J, L Y 2011 Acta Acustica 36 66 (in Chinese) [吴文焘, 蒲杰, 吕燚 2011 声学学报 36 66]

    [5]

    Widrow B, Duvall K M, Gooch R P, Newman W C 1982 IEEE Trans. Antenn. Propag. 30 469

    [6]

    Sakhaei S M 2013 Ultrasonics 59 119

    [7]

    Wang P, Xu Q, Fan W Z, Gao Y, He W, Chen M Y 2013 Acta Acustica 38 65 (in Chinese) [王平, 许琴, 范文政, 高阳, 何为, 陈民铀 2013 声学学报 38 65]

    [8]

    Li J, Stoica P, Wang Z S 2004 IEEE Trans. Sign. Process. 52 2407

    [9]

    Selen Y, Abrahamsson R, Stoica P 2008 Signal Process. 88 33

    [10]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [11]

    Zheng C C, Peng H, Han Z H 2012 Acta Acustica 37 637 (in Chinese) [郑驰超, 彭虎, 韩志会 2012 声学学报 37 637]

    [12]

    Li P C, Li M L 2003 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 50 128

    [13]

    Park S, Karpiouk A B, Aglyamov S R, Emelianov S Y 2008 Opt. Lett. 33 1291

    [14]

    Asl B M, Mahloojifar A 2009 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 56 1923

    [15]

    Aboulnasr H, Sherif A E, Alex B G, Kon M W 2006 IEEE Trans. Signal Process. 54 1587

    [16]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 958

    [17]

    Jensen J A, Svendsen N B 1992 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 39 262

  • [1] 李保民, 胡明亮, 范桁. 量子相干.  , 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [2] 钱祖文. 颗粒介质中的粘滞系数.  , 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [3] 郭美玉, 高洁. 变系数广义Gardner方程的微分不变量及群分类.  , 2009, 58(10): 6686-6691. doi: 10.7498/aps.58.6686
    [4] 程科, 吕百达. 四个部分相干点源的完全相消干涉特性.  , 2009, 58(1): 250-257. doi: 10.7498/aps.58.250
    [5] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究.  , 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [6] 陈子伦, 周 朴, 许晓军, 侯 静, 姜宗福. 谱线和耦合系数对光纤激光器相互注入锁定的影响.  , 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [7] 任 珉, 马爱群, Muhammad Ashfaq Ahmad, 曾 然, 刘树田, 马志民. 一类q变形广义相干叠加态的量子统计性质.  , 2007, 56(2): 845-853. doi: 10.7498/aps.56.845
    [8] 毛杰健, 杨建荣. 变系数广义KdV方程新的类孤波解和精确解.  , 2007, 56(9): 5049-5053. doi: 10.7498/aps.56.5049
    [9] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [10] 李德生, 张鸿庆. 改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解.  , 2003, 52(7): 1569-1573. doi: 10.7498/aps.52.1569
    [11] 张解放, 陈芳跃. 截断展开方法和广义变系数KdV方程新的精确类孤子解.  , 2001, 50(9): 1648-1650. doi: 10.7498/aps.50.1648
    [12] 光纤在光子相关光谱中的研究.  , 2001, 50(8): 1507-1511. doi: 10.7498/aps.50.1507
    [13] 倪致祥. 非简谐振子广义相干态的叠加态.  , 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
    [14] 徐子(马文). 非简谐振子的奇偶广义相干态.  , 1996, 45(11): 1807-1811. doi: 10.7498/aps.45.1807
    [15] 张希清, 赵家龙, 秦伟平, 窦凯, 黄世华. 用非相干光时间延迟四波混频测量二极扩散系数.  , 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
    [16] 翁征宇, 吴杭生. Kubo线性输运系数公式.  , 1984, 33(4): 575-578. doi: 10.7498/aps.33.575
    [17] 陈建文, 傅淑芬. 放电激励KrF,ArF激光器中电子能量分布函数和输运系数的计算.  , 1981, 30(9): 1165-1173. doi: 10.7498/aps.30.1165
    [18] 詹达三. 关于广义线性相干光处理系统的讨论.  , 1979, 28(3): 358-363. doi: 10.7498/aps.28.358
    [19] 郑大章, 杨承宗. β射线之吸收系数.  , 1947, 7(1): 29-47. doi: 10.7498/aps.7.29
    [20] 任之恭. H~-之吸收系数.  , 1936, 2(1): 38-42. doi: 10.7498/aps.2.38
计量
  • 文章访问数:  6634
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-21
  • 修回日期:  2015-08-01
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map