-
For the problem of broadband beamforming in a subregion of interest, a robust Frost beamforming algorithm is derived by reconstructing the signal subspace. The basic idea of the proposed algorithm is to extract the characteristic components of the signal of interest (SOI) from the estimated signal-plus-interference subspace by a matrix filter first, then employ these characteristic components to reconstruct the signal subspace, and finally construct a set of linearly constrained minimum variance (LCMV) constraints to protect the SOI components. Compared with some other robust Frost beamformers, the proposed algorithm has a significant advantage, i.e., its steering-angle and band are effective to match the SOI without prior information. Hence, the performance of the proposed algorithm is almost always close to the optimal value across the whole region of interest. Theoretical analysis and simulation results validate the effectiveness of the proposed algorithm.
-
Keywords:
- matrix filter /
- robust Frost beamformer /
- linearly constrained minimum variance constraint /
- signal subspace
[1] Wang Y, Wu W F, Fan Z, Liang G L 2013 Acta Phys. Sin. 62 184302 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2013 62 184302]
[2] Song A G 1999 Acta Electronica Sin. 27 65 (in Chinese) [宋爱国 1999 电子学报 27 65]
[3] Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]
[4] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[5] Lu L, Ji X L, Deng J P, Li X Q 2014 Chin. Phys. B 23 064209
[6] Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201
[7] Wang Y Q, Ye J S, Liu S T, Zhang Y 2013 Chin. Phys. B 22 114202
[8] Yong Z, Wei L, Richard J L 2011 IEEE Trans. Antennas Propag. 59 1175
[9] Van T H 2002 Optimum Array Processing (3rd Ed.) (New York: Wiley) p522
[10] Hossain M S, Milford G N, Reed M C, Godara L C 2013 IEEE Trans. Antennas Propag. 61 718
[11] Aboulnasr H, Sergiy A V, Kon M W 2008 IEEE Signal Process. Lett. 15 733
[12] Athanasios P L, Phillip A R 2001 IEEE Trans. Signal Process. 49 1689
[13] Boyd S, Vandenberghe L 2004 Convex Optimization (1st Ed.) (Cambridge: Cambridge University Press) p125
[14] Fan Z, Liang G L 2013 Acta Electronica Sin. 41 943 (in Chinese) [范展, 梁国龙 2013 电子学报 41 943]
-
[1] Wang Y, Wu W F, Fan Z, Liang G L 2013 Acta Phys. Sin. 62 184302 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2013 62 184302]
[2] Song A G 1999 Acta Electronica Sin. 27 65 (in Chinese) [宋爱国 1999 电子学报 27 65]
[3] Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]
[4] Liang G L, Ma W, Fan Z, Wang Y L 2013 Acta Phys. Sin. 62 144302 (in Chinese) [梁国龙, 马巍, 范展, 王逸林 2013 62 144302]
[5] Lu L, Ji X L, Deng J P, Li X Q 2014 Chin. Phys. B 23 064209
[6] Lin B Q, Zhao S H, Wei W, Da X Y, Zheng Q R, Zhang H Y, Zhu M 2014 Chin. Phys. B 23 024201
[7] Wang Y Q, Ye J S, Liu S T, Zhang Y 2013 Chin. Phys. B 22 114202
[8] Yong Z, Wei L, Richard J L 2011 IEEE Trans. Antennas Propag. 59 1175
[9] Van T H 2002 Optimum Array Processing (3rd Ed.) (New York: Wiley) p522
[10] Hossain M S, Milford G N, Reed M C, Godara L C 2013 IEEE Trans. Antennas Propag. 61 718
[11] Aboulnasr H, Sergiy A V, Kon M W 2008 IEEE Signal Process. Lett. 15 733
[12] Athanasios P L, Phillip A R 2001 IEEE Trans. Signal Process. 49 1689
[13] Boyd S, Vandenberghe L 2004 Convex Optimization (1st Ed.) (Cambridge: Cambridge University Press) p125
[14] Fan Z, Liang G L 2013 Acta Electronica Sin. 41 943 (in Chinese) [范展, 梁国龙 2013 电子学报 41 943]
Catalog
Metrics
- Abstract views: 6610
- PDF Downloads: 278
- Cited By: 0