搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统

肖夏 宋航 王梁 王宗杰 路红

引用本文:
Citation:

早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统

肖夏, 宋航, 王梁, 王宗杰, 路红

Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection

Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong
PDF
导出引用
  • 提出了一种基于自主设计小型超宽带天线的微波稳健波束形成(RCB)成像肿瘤检测系统. 仿真结果表明,该检测系统对肿瘤反射信号有很高的敏感度. 在简单平面模型和核磁共振成像图(MRI)导出模型中进行仿真检测实验,并将天线阵列接收信号用RCB算法进行成像处理. 从乳房重构图像中能够得到正确的肿瘤位置及大小信息,实现了平面模型中最小直径3 mm和MRI导出模型中最小直径4 mm的肿瘤检测,证实了该检测系统用于早期乳腺肿瘤检测的可行性.
    An ultra-wideband (UWB) microwave robust Capon beamforming imaging system is presented based on a self-designed compact UWB antenna for early breast cancer detection. Simulation results show that the proposed detection system is sensitive to tumor response. Simulated tumor detection experiments are carried out in both simple planar breast model and magnetic resonance imagining (MRI)-derived model using the antenna array. Robust Capon beamforming algorithm is employed to reconstruct the breast image. Successful detection of 3-mm-diameter tumor is achieved in the planar model and the same detection result of 4-mm-diameter tumor is achieved in the MRI-derived model. The right information of the tumor can be obtained from the imaging results, which demonstrates the feasibility of the proposed system in early breast cancer detection.
    • 基金项目: 国家自然科学基金(批准号:61271323)和毫米波国家重点实验室开放基金(批准号:K200913)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271323), and the Open Project from State Key Laboratory of Millimeter Waves, China (Grant No. K200913).
    [1]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [2]

    Fear E C, Hagness S C, Meaney P M, Okinoiewski M, Stuchly M A 2002 IEEE Microw. Mag. 3 48

    [3]

    Xiao X, Xu L, Liu B Y 2013 Acta Phys. Sin. 62 044105(in Chinese) [肖夏, 徐立, 刘冰雨 2013 62 044105]

    [4]

    Li X, Bond E J, Van Veen D B, Hagness S C 2005 IEEE Antennas Propag. Mag. 47 19

    [5]

    Klemm M, Craddock I J, Leendertz J A, Preece A W, Benjamin R 2009 IEEE Trans. Antennas Propag. 57 1692

    [6]

    Fear E C, Bourqui J, Curtis C, Mew D, Docktor B, Romano C 2013 IEEE Trans. Microw. Theory Tech. 61 2119

    [7]

    Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 074303(in Chinese) [刘广东, 张业荣 2011 60 074303]

    [8]

    Ryu K S, Kishk A A 2011 IEEE Trans. Antennas Propag. 59 3738

    [9]

    Chen Y F, Craddock I J, Kosmas P, Ghavami M, Rapajic P 2010 IEEE J. Sel. Top. Signal Process. 4 187

    [10]

    Lim H B, Nhung N T T, Li E P, Thang N D 2008 IEEE Trans. Biomed. Eng. 55 1697

    [11]

    Xie Y, Guo B, Xu L Z, Li J, Stoica P 2006 IEEE Trans. Biomed. Eng. 53 1647

    [12]

    Liu B Y, Xiao X, Liu X 2011International Conference on Control, Automation and Systems Engineering, Singapore, July 30-31, 2011, p1

    [13]

    Gibbins D, Klemm M, Craddock I J, Leenderts J A, Preece A, Benjamin R 2010 IEEE Trans. Antennas Propag. 58 665

    [14]

    Fear E C, Li X, Hagness S C, Stuchly M A 2002 IEEE Trans. Biomed. Eng. 49 812

    [15]

    Li X, Hagness S C, Choi M K, van der Weide D W 2003 IEEE Antennas Wirel. Propag. Lett. 2 259

    [16]

    Sill J M, Fear E C, Westwick D 2005 IEEE Trans. Microw. Theory Tech. 53 3312

    [17]

    Wang Y, Bakar A, Bialkowski M 2011 Microw. Opt. Technol. Lett. 53 830

    [18]

    Li X Y, Sit Y L, Zwirello L, Zwick T 2013 Microw. Opt. Technol. Lett. 55 105

    [19]

    Zhang J J, Fear E C, Johnston R H 2009 Microw. Opt. Technol. Lett. 51 275

    [20]

    Bourqui J, Okoniewski M, Fear E C 2010 IEEE Trans. Antennas Propag. 58 2318

    [21]

    Amineh R K, Ravan M, Trehan A, Nikolova N K 2011 IEEE Trans. Antennas Propag. 59 928

    [22]

    Bourqui J, Fear E C 2012 IEEE Antennas Wirel. Propag. Lett. 11 1614

    [23]

    Xiao X, Kikkawa T 2008 Appl. Surf. Sci. 255 597

    [24]

    Li J, Stoica P, Wang Z 2003 IEEE Trans. Signal Process. 51 1702

  • [1]

    Xiao X, Xu L, Li Q W 2013 Chin. Phys. B 22 094101

    [2]

    Fear E C, Hagness S C, Meaney P M, Okinoiewski M, Stuchly M A 2002 IEEE Microw. Mag. 3 48

    [3]

    Xiao X, Xu L, Liu B Y 2013 Acta Phys. Sin. 62 044105(in Chinese) [肖夏, 徐立, 刘冰雨 2013 62 044105]

    [4]

    Li X, Bond E J, Van Veen D B, Hagness S C 2005 IEEE Antennas Propag. Mag. 47 19

    [5]

    Klemm M, Craddock I J, Leendertz J A, Preece A W, Benjamin R 2009 IEEE Trans. Antennas Propag. 57 1692

    [6]

    Fear E C, Bourqui J, Curtis C, Mew D, Docktor B, Romano C 2013 IEEE Trans. Microw. Theory Tech. 61 2119

    [7]

    Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 074303(in Chinese) [刘广东, 张业荣 2011 60 074303]

    [8]

    Ryu K S, Kishk A A 2011 IEEE Trans. Antennas Propag. 59 3738

    [9]

    Chen Y F, Craddock I J, Kosmas P, Ghavami M, Rapajic P 2010 IEEE J. Sel. Top. Signal Process. 4 187

    [10]

    Lim H B, Nhung N T T, Li E P, Thang N D 2008 IEEE Trans. Biomed. Eng. 55 1697

    [11]

    Xie Y, Guo B, Xu L Z, Li J, Stoica P 2006 IEEE Trans. Biomed. Eng. 53 1647

    [12]

    Liu B Y, Xiao X, Liu X 2011International Conference on Control, Automation and Systems Engineering, Singapore, July 30-31, 2011, p1

    [13]

    Gibbins D, Klemm M, Craddock I J, Leenderts J A, Preece A, Benjamin R 2010 IEEE Trans. Antennas Propag. 58 665

    [14]

    Fear E C, Li X, Hagness S C, Stuchly M A 2002 IEEE Trans. Biomed. Eng. 49 812

    [15]

    Li X, Hagness S C, Choi M K, van der Weide D W 2003 IEEE Antennas Wirel. Propag. Lett. 2 259

    [16]

    Sill J M, Fear E C, Westwick D 2005 IEEE Trans. Microw. Theory Tech. 53 3312

    [17]

    Wang Y, Bakar A, Bialkowski M 2011 Microw. Opt. Technol. Lett. 53 830

    [18]

    Li X Y, Sit Y L, Zwirello L, Zwick T 2013 Microw. Opt. Technol. Lett. 55 105

    [19]

    Zhang J J, Fear E C, Johnston R H 2009 Microw. Opt. Technol. Lett. 51 275

    [20]

    Bourqui J, Okoniewski M, Fear E C 2010 IEEE Trans. Antennas Propag. 58 2318

    [21]

    Amineh R K, Ravan M, Trehan A, Nikolova N K 2011 IEEE Trans. Antennas Propag. 59 928

    [22]

    Bourqui J, Fear E C 2012 IEEE Antennas Wirel. Propag. Lett. 11 1614

    [23]

    Xiao X, Kikkawa T 2008 Appl. Surf. Sci. 255 597

    [24]

    Li J, Stoica P, Wang Z 2003 IEEE Trans. Signal Process. 51 1702

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体.  , 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟.  , 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [3] 赵赞善, 李培丽. 基于半导体光纤环形腔激光器的全光广播式超宽带信号源.  , 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [4] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器.  , 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [5] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器.  , 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [6] 周天益. 基于随机场照射的最优微波成像.  , 2019, 68(5): 055201. doi: 10.7498/aps.68.20182122
    [7] 陈功, 张业荣. 基于胶囊内窥镜的胃部肿瘤检测方法.  , 2016, 65(19): 194101. doi: 10.7498/aps.65.194101
    [8] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法.  , 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [9] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [10] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法.  , 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [11] 郭蓉, 曹祥玉, 袁子东, 徐雪飞. 一种新型宽带定向性贴片天线设计.  , 2014, 63(24): 244102. doi: 10.7498/aps.63.244102
    [12] 王燕, 吴文峰, 范展, 梁国龙. 基于半定规划和秩-1分解的稳健波束形成.  , 2013, 62(18): 184302. doi: 10.7498/aps.62.184302
    [13] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究.  , 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [14] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器.  , 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [15] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号.  , 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [16] 肖夏, 徐立, 刘冰雨. 超宽带微波检测早期乳腺肿瘤三维仿真.  , 2013, 62(4): 044105. doi: 10.7498/aps.62.044105
    [17] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究.  , 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [18] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究.  , 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [19] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线.  , 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究.  , 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
计量
  • 文章访问数:  6017
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-19
  • 修回日期:  2014-04-22
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map